Probabilistic Operational Semantics
for the Lambda Calculus

Ugo Dal Lago* Margherita Zorzi†

Abstract

Probabilistic operational semantics for a nondeterministic extension of pure lambda calculus is studied. In this semantics, a term evaluates to a (finite or infinite) distribution of values. Small-step and big-step semantics are both inductively and coinductively defined. Moreover, small-step and big-step semantics are shown to produce identical outcomes, both in call-by-value and in call-by-name. Plotkin’s CPS translation is extended to accommodate the choice operator and shown correct with respect to the operational semantics. Finally, the expressive power of the obtained system is studied: the calculus is shown to be sound and complete with respect to computable probability distributions.

1 Introduction

Randomized computation is central to several areas of theoretical computer science, including computational complexity, cryptography, analysis of computation dealing with uncertainty, incomplete knowledge agent systems. Some works have been devoted also to the design and analysis of programming languages with stochastic aspects. For various reasons, the functional programming paradigm seems appropriate in this context, because of the very thin gap between the realm of programs and the underlying probability world.

The large majority of the literature on probabilistic functional programming view probability as a monad, in the sense of Moggi [12, 13]. This is the case for the works by Plotkin and Jones about denotational semantics of probabilistic functional programs [10], or for many of the recently proposed probabilistic functional programming languages: the stochastic lambda calculus [19] and the lambda calculi by Park, Pfenning and Thrun [15, 16]. The monadic structure of probability distributions provides a good denotational model for the calculi and it makes evident how the mathematical foundations of probability can be applied directly in a natural way to the semantics of probabilistic programs. This allows, for example, to apply this approach to the formalization of properties of randomized algorithms in interactive theorem proving [1]. The monadic approach seems particularly appropriate in applications, since some programming languages, like Haskell, directly implement monads.

But there is another, more direct, way to endow the lambda calculus with probabilistic choice, namely by enriching it with a binary choice operator \(\oplus \). This way, we can form terms whose behavior is probabilistically chosen as the one of the first or of the second argument. It is not clear, however, whether the operational theory underlying ordinary, deterministic lambda calculus, extends smoothly to this new, probabilistic setting. The aim of this paper is precisely to start an investigation in this direction. The object of our study will be the nondeterministic lambda calculus, being it a minimal extension of the ordinary lambda calculus with a choice operator. The subject of our study, on the other hand, will be the properties of two notions of probabilistic semantics for it, namely call-by-value and call-by-name evaluation. Big-step and small-step probabilistic semantics will be defined and proved equivalent, both when defined inductively and when defined coinductively. CPS translations extending the ones in the literature are presented and proved.

*Università di Bologna & EPI FOCUS, dallago@cs.unibo.it
†Università di Verona, margherita.zorzi@univr.it
to have the usual properties enjoyed in the deterministic case. Finally, some results about the expressive power of the obtained calculus are proved.

1.1 Related works

The pioneering investigation in the fields of stochastic functional languages is the probabilistic LCF (PLCF in the following) proposed by Saheb-Djahromi in \[20\]. PLCF is a typed, higher-order calculus based on Milner’s LCF, Plotkin’s PCF \[18\] and Plotkin’s probabilistic domains (further developed by Plotkin and Jones in \[10\]). The syntax of PLCF, two kinds of abstractions are present which deal separately with call-by-value and call-by-name evaluation, respectively. The author declares an explicit intent in providing “a foundation for the probabilistic study of the computation” and even if a number of important aspects are unexplored, the approach is interesting and related to the present investigation. Saheb-Djahromi provides both denotational and operational semantics for PLCF. Denotational semantics, defined in terms of probabilistic domains, is an extension of Milner’s and Plotkin’s one. Operational semantics is a given as a Markov chain, and an equivalence result between the latter and a denotational model is stated and proved as an extension of Plotkin’s results.

In recent years, some lambda calculi with probabilistic features have been introduced, strongly oriented to applications (e.g. robotics). The most developed approach is definitely the monadic one \[12, 13\], based on the idea that probability distribution forms a monad \([8], [10]\). In \[19\], Ramsey and Pfeffer introduce the stochastic lambda calculus, in which the denotation of expressions are distributions and in which the probability monad is shown to be useful in the evaluation of queries about the defined probabilistic model. A measure theory and a simple measure language are introduced and the stochastic lambda calculus is compiled into the measure language. Moreover, a denotational semantics based upon the monad of probability measures is defined. In \[13\], Park define the typed calculus \(\lambda_\gamma\), an extension of the typed lambda calculus with an integral abstraction and a sampling construct, which bind probability and sampling variables respectively. A system of simple types for \(\lambda_\gamma\) is also introduced. The author briefly discusses about the expressive power of \(\lambda_\gamma\): the calculus has been shown to be able to express the most relevant probability distributions. \(\lambda_\gamma\) does not make use of monads, which are however present in \[15\], in which the idea of a calculus based on the mathematical notion of a sampling function is further developed through the introduction of \(\lambda_\ominus\). \(\lambda_\ominus\) is based on the monad of sampling functions and is able to specify probability distributions over infinite discrete domains and continuous domains. The authors also develop a new operational semantics, called horizontal operational semantics. The calculus \(\lambda_\ominus\) is further studied and developed in \[16\].

Non-determinism and probability, however, can find their place in a completely different way. In \[6\], de’Liguoro and Piperno propose a non deterministic lambda calculus, called \(\Lambda_\oplus\). \(\Lambda_\oplus\) is nothing more than the usual, untyped, \(\lambda\)-calculus with an additional binary operator \(\oplus\) which serves to represent binary, non-deterministic choice: \(M \oplus N\) rewrites to either \(M\) or \(N\). The authors give a standardization theorem and an algebraic semantics for \(\Lambda_\oplus\). The classical definition of a B"ohm tree is extended to the non-deterministic case by means of inductively defined “approximating operators”. Several relevant properties such as discriminability are studied and, moreover, some suitable models for non-deterministic lambda calculus are proposed and discussed. In \[7\], Di Pierro, Henkin and Wiklicky propose an untyped lambda calculus with probabilistic choice. Its syntax is itself an extension of pure lambda calculus with \(n\)-ary probabilistic choice in the form \(\bigoplus_{i=1}^n p_i : M_i\). The main objective, however, is showing how probabilistic abstract interpretation can be exploited in the context of static analysis of probabilistic programs even in presence of higher-order functions. This is reflected by its operational semantics, which is more directed to program analysis (when two terms can be considered as equal?) than to computation (what is the value obtained by evaluating a program? how can we compute it?).
1.2 Outline

After some motivating observations about the interplay between rewriting and nondeterministic choice (Section 2), the calculus Λ⊕ and its call-by-value probabilistic operational semantics are introduced (Section 4 and Section 5, respectively). Both small-step and big-step semantics are defined and their equivalence is proved in detail. Remarkably, the result holds even when operational semantics is formulated coinductively. The same results hold for call-by-name evaluation and are described in Section 6. Call-by-value and call-by-name can be shown to be able to simulate each other by slight modifications of the well-known CPS translations [17], described in Section 7. The paper ends with a result about the expressive power of the calculus namely the equivalence between representable and computable distributions.

2 Some Motivating Observations

Lambda calculus can be seen both as an equational theory on lambda terms and as an abstract model of computation. In the first case, it is natural (and customary) to allow to apply equations (e.g. β or η equivalences) at any position in the term. The obtained calculus enjoys confluence, in the form of the the so-called Church-Rosser theorem: equality of terms remains transitive even if equations becomes rewriting rules, i.e. if they are given with an orientation. More computationally, on the other hand, the meaning of any lambda-term is the value it evaluates to in some strategy or machine. In this setting, abstractions are often considered as values, meaning that reduction cannot take place in the scope of a lambda abstraction. What’s obtained this way is a calculus with weak reduction which is not confluent in the Church-Rosser sense. As an example, take the term (λx.λy.x)((λz.z)(λz.z)). In call-by-value, it reduces to λy.(λz.z). In call-by-name, it reduces to λy.(λz.z)(λz.z). A beautiful operational theory has developed since Plotkin’s pioneering’s work [17]. Call-by-value and call-by-name have been shown to be dual to each other [2], and continuation-based translations allowing to simulate one style with the other have been designed and analyzed very carefully [3, 4].

Now, suppose to endow the lambda calculus with nondeterministic sums. Suppose, in other words, to introduce a binary infix term operator ⊕ such that M⊕N can act either as M or N in a nondeterministic flavor. What we obtain is the so-called nondeterministic lambda-calculus, which has been introduced and studied in [6]. We cannot hope to get any confluence results in this setting (at least if we stick to reduction as a binary relation on terms): a term like M = M⊤ ⊕ M⊥,(where M⊤ = λx.λy.x and M⊥ = λx.λy.y are the usual representation of truth values in the lambda-calculus) reduces to two distinct values (which are different in a very strong sense!) in any strategy. The meaning of any lambda term, here, is a set of values accounting for all the possible outcomes. The meaning of M, as an example, is the set {M⊤, M⊥}. Nontermination, mixed with nondeterministic choice, implies that the meaning of terms can even be an infinite set of values. As an example, take the lambda term

(Y(λx.λy.(y ⊕ x(Msuccy))))V0

where Y is a fixed-point combinator, Vn represents the natural number n ∈ N and Msucc computes the successor. Evaluating it (e.g. in call-by-value) produces the infinite set

{V0, V1, V2, ...}.

It’s clear that ordinary ways to give an operational semantics to the lambda-calculus (e.g. a finitary, inductively defined, formal system) do not suffice here, since they intrinsically attribute a finitary meaning to terms. So, how can we define small-step and big-step semantics in a nondeterministic setting?

Another problematic point is confluence. The situation is even worse than in ordinary, deterministic, lambda calculus. Take the following term [20, 21]:

M = (λx.Mxorxx)(M⊤ ⊕ M⊥)
where \(M_{xor} = \lambda x.\lambda y.(x(\lambda zzM_\top)(\lambda zzM_\top))y \) is a term computing a parity function of the two bits in input. When reducing it call-by-value, we obtain the outcome \(\{M_\top\} \), while reducing it call-by-name, we obtain \(\{M_\top, M_\bot\} \). This phenomenon is due to the interaction between nondeterministic choice and copying: in call-by-value we choose before copying, and the final result can only be of a certain form. In call-by-name, we copy before choosing, getting distinct outcomes. What happens to CPS translations in this setting? Is it still possible to define them?

The aim of this paper is precisely to give answers to the questions above. Or, better, to give answers to their natural, quantitative generalizations obtained by considering \(\oplus \) as an operator producing any of two possible outcomes with identical probability.

3 A Brief Introduction to Coinduction

Coinduction is a definitional principle dual to induction, which support a proof principle. It is a very useful instrument for reasoning about diverging computations and unbounded structures. Coinductive techniques are not yet as popular as inductive techniques; for this reason, in this section we give a short introduction to coinduction, following [11].

An inference system over a set \(U \) of judgments is a set of inference rules. An inference rule is a pair \((A, c)\), where \(c \in U \) is the conclusion of the rule and \(A \subseteq U \) is the set of its premises or antecedents. An inference system \(\Phi \) over \(U \) is a set of inference rules over \(U \).

The usual way to give meaning to an inference system is to consider the fixed points of the associated inference operator. If \(\Phi \) is an inference system over \(U \), we define the operator \(F_\Phi : \wp(U) \to \wp(U) \) as

\[
F_\Phi(A) = \{c \in U \mid \exists B \subseteq A, (B, c) \in \Phi\}.
\]

In other words, \(F_\Phi(A) \) is the set of judgments that can be inferred in one step from the judgments in \(A \) by using the inference rules. A set \(A \) is said to be closed if \(F_\Phi(A) \subseteq A \), and consistent if \(A \subseteq F_\Phi(A) \). A closed set \(A \) is such that no new judgments can be inferred from \(A \). A consistent set \(A \) is such that all judgments that cannot be inferred from \(A \) are not in \(A \). The inference operator is monotone: \(F_\Phi(A) \subseteq F_\Phi(B) \) if \(A \subseteq B \). By Tarski’s fixed point theorem for complete lattices, it follows that the inference operator possesses both a least fixed point and a greatest fixed point, which are the smallest closed set and the largest consistent set, respectively:

\[
lfp(F_\Phi) = \bigcap\{A \mid F_\Phi(A) \subseteq A\};
\]

\[
gfp(F_\Phi) = \bigcup\{A \mid A \subseteq F_\Phi(A)\}.
\]

The least fixed point \(lfp(F_\Phi) \) is the inductive interpretation of the inference system \(\Phi \), and the greatest fixed point \(gfp(F_\Phi) \) is its coinductive interpretation.

These interpretations lead to the following two proof principles:

- **Induction principle:** to prove that all judgments in the inductive interpretation belong to a set \(A \), show that \(A \) is \(F_\Phi \)-closed.
- **Coinduction principle:** to prove that all judgments in a set \(A \) belong to the coinductive interpretation, show that \(A \) is \(F_\Phi \)-consistent. Indeed, if \(A \) is \(F_\Phi \)-consistent, then

\[
A \subseteq F_\Phi(A) \implies A \subseteq \{B \mid B \subseteq F_\Phi(B)\}
\]

\[
\implies A \subseteq \bigcup\{B \mid B \subseteq F_\Phi(B)\} = gfp(F_\Phi).
\]

Example 1 (Finite and Infinite Trees) Let us consider all those (finite and infinite) trees whose nodes are labelled with a symbol from the alphabet \(\{\circ, \bullet\} \). Example of finite trees are

\[
\circ \circ \circ \bullet
\]

\[
\bullet \circ \circ \bullet, \circ \circ \bullet, \circ \bullet, \circ
\]
while an example of an infinite tree is the (unique!) tree t such that $t = \circ(t, t, t)$. Let \mathcal{U} the set of judgments in the form $t \Downarrow$, where t is a possibly infinite tree as above. Moreover, let Φ be the inference system composed by all the instances of the two rules below:

\[\bullet \Downarrow \quad \circ \Downarrow \]
\[t_1 \Downarrow, \ldots, t_n \Downarrow \quad t_1 \Downarrow, \ldots, t_n \Downarrow \]

The inductive interpretation of Φ contains all judgments $t \Downarrow$ where t is finite tree, while its coinductive interpretation contains also all judgments $t \Downarrow$ where t is infinite.

4 Syntax and Preliminary Definitions

In this section we introduce the syntax of Λ_{\oplus}, a language of lambda terms with binary choice introduced by de’Liguoro and Piperno [6]. This is the language whose probabilistic semantics is the main topic of this paper.

The most important syntactic category is certainly those of terms. Actually, Λ_{\oplus} is nothing more than the usual untyped and pure lambda calculus, endowed with a binary choice operator \oplus which is meant to represent nondeterministic choice.

Definition 1 (Terms) Let $\{x, y, \ldots\}$ be a denumerable set of variables. The set Λ_{\oplus} of term expressions, or terms, is the smallest set such that:

1. if $x \in X$ then $x \in \Lambda_{\oplus}$;
2. if $x \in X$ and $M \in \Lambda_{\oplus}$, then $\lambda x.M \in \Lambda_{\oplus}$;
3. if $M, N \in \Lambda_{\oplus}$ then $MN \in \Lambda_{\oplus}$;
4. if $M, N \in \Lambda_{\oplus}$ then $M \oplus N \in \Lambda_{\oplus}$.

Terms are ranged over by metavariables like M, N, L.

Terms, as usual, are considered modulo renaming of bound variables. The set of free variables of a term M is indicated as $\text{FV}(M)$ and is defined as usual. A term M is closed if $\text{FV}(M) = \emptyset$.

The (capture-avoiding) substitution of N for the free occurrences of x in M is denoted $M\{x/N\}$.

Unless otherwise stated, all results in this paper hold only for programs, that is to say for closed terms. Values are defined in a standard way:

Definition 2 (Values) A term is a value if it is a variable or a lambda abstraction. We will call Val the set of all values. Values are ranged over by metavariables like V, W, X.

The reduction relation \rightarrow considered in [6] is obtained by extending usual β-reduction with two new reduction rules, namely $M \oplus N \rightarrow M$ and $M \oplus N \rightarrow N$, which can be applied in every possible context. In this paper, following Plotkin [17], we concentrate on weak reduction: computation can only take place in applicative (or choice) contexts.

Notation 1 In the following, we sometimes need to work with finite sequences of terms. A sequence M_1, \ldots, M_n is denoted as M. This notation can be used to denote sequences obtained from other sequences and terms, e.g., $M \oplus N$ is $M \oplus N_1, \ldots, M \oplus N_n$ whenever N is N_1, \ldots, N_n.

4.1 Distributions

In the probabilistic semantics we will endow Λ_{\oplus} with, a program reduces not to a single value but rather to a distribution of possible observables, i.e. to a function assigning a probability to any value. This way, all possible outputs of all binary choices are taken into account, each with its own probability. Divergence is indeed a possibility in the untyped setting and our definition reflects it.

Definition 3 (Distributions) 1. A probability distribution is a function $\mathcal{D} : \text{Val} \rightarrow [0,1]$ such that $\sum_{V \in \text{Val}} \mathcal{D}(V) \leq 1$. \mathcal{P} denotes the set of all probability distributions.
2. A proper probability distribution is a probability distribution such that $\sum_{V \in \text{Val}} \mathcal{D}(V) = 1$.

5
3. Given a probability distribution \mathcal{D}, its support $S(\mathcal{D})$ is the subset of Val whose elements are values to which \mathcal{D} attributes positive probability.

4. Given a probability distribution \mathcal{D}, its sum $\sum\mathcal{D}$ is simply $\sum_{V \in \text{Val}} \mathcal{D}(V)$.

The notion of a probability distribution as we give it is general enough to capture the semantics of those terms which have some nonnull probability of diverging. We use the expression $\{V_1^{p_1}, \ldots, V_k^{p_k}\}$ to denote the probability distribution with finite support \mathcal{D} defined as $\mathcal{D}(V) = \sum_{i=1}^{k} p_i$. Please observe that $\sum\mathcal{D} = \sum_{i=1}^{k} p_i$.

Sometimes we need to compare distinct distributions. The natural way to do that is just by lifting the canonical order on \mathbb{R} up to distributions, pointwise:

Definition 4 $\mathcal{D} \leq \mathcal{E}$ iff $\mathcal{D}(V) \leq \mathcal{E}(V)$ for every value V.

The structure (\mathcal{P}, \leq) is a partial order, but not a lattice \([5]\): the join of two distributions \mathcal{D} and \mathcal{E} does not necessarily exist in \mathcal{P}. However, (\mathcal{P}, \leq) is a complete meet-semilattice, since meets are always guaranteed to exist: for every $A \subseteq \mathcal{P}$, the greatest lower bound of distributions in A is itself a distribution. Please observe, on the other hand, that all functions from Val to \mathbb{R}_{∞} actually form a complete lattice. And that $\sum(\cdot)$ as a function from those functions to \mathbb{R}_{∞} is actually a complete lattice homomorphism.

5. **Call-by-Value**

In this section, four ways to give a probabilistic semantics to $\Lambda \oplus$ are introduced, all of them following the so-called call-by-value passing discipline.

A (weak) call-by-value notion of reduction can be obtained from ordinary reduction by restricting it in such a way that only values are passed to functions. Accordingly, choices are only made when both alternatives are themselves values:

Definition 5 (Call-by-value Reduction) Leftmost reduction \rightarrow_v is the least binary relation between Λ_{\oplus} and Λ_{\oplus}^* such that:

- $(\lambda x. M) V \rightarrow_v M \{x/V\}$
- $V \oplus W \rightarrow_v V, W$
- $MN \rightarrow_v LN$ if $M \rightarrow_v L$
- $M \oplus N \rightarrow_v L \oplus N$ if $M \rightarrow_v L$
- $VM \rightarrow_v V \bar{N}$ if $M \rightarrow_v N$
- $V \oplus M \rightarrow_v V \oplus \bar{N}$ if $M \rightarrow_v \bar{N}$

where $V, W \in \text{Val}$.

Please, notice that reduction is *not* probabilistic. In fact, reduction is a relation between terms and unlabeled sequences of terms without any reference to probability. Informally, if $M \rightarrow_v N_1 \ldots N_n$ means that M rewrites in one step to every N_i with the *same* probability $1/n$. Clearly, $n \in \{1, 2\}$ whenever $M \rightarrow_v N_1 \ldots N_n$. Notice again how the evaluation of both branches of a binary choice is done before performing the choice itself. One the one hand, this is very much in the style of call-by-value evaluation. On the other, a more standard notion of choice, which is performed before evaluating the branches can be easily encoded as follows:

$$M + N = ((\lambda x. \lambda y.x) \oplus (\lambda x. \lambda y.y))((\lambda z. M)(\lambda z. N)(\lambda w.w)),$$

where z does not appear free in M nor in N.

5.1 CbV Small-step Semantics

Following the general methodology described in \([11]\), we model separately convergence and divergence. Finite computations are, as usual, inductively defined, while divergence can be captured by interpreting a different set of rules coinductively. Both definitions give some *quantitative* information about the dynamics of any term M: either a distribution of possible outcomes is
associated to \(M \), or the probability of divergence of \(M \) is derived. Both induction and coinduction can be used to characterize the distribution of values a term evaluates to. In an inductive characterization, one is allowed to underapproximate the target distribution, but then takes an upper bound of all the approximations. In a coinductive characterization, on the other hand, one can naturally overapproximates the distribution, then taking a lower bound.

5.1.1 Inductive CbV Small-Step Semantics for Convergence

A small-step semantics for convergence is captured here by way of a binary relation \(\Rightarrow \) between terms in \(\Lambda \) and distributions. The relation \(\Rightarrow \) is defined as the inductive interpretation of the inference system whose rules are all possible instances of the following ones:

\[
\begin{align*}
M \Rightarrow \emptyset & \quad \text{se}_\text{IV} \\
V \Rightarrow \{V^1\} & \quad \text{sv}_\text{IV} \\
M \Rightarrow \sum_{i=1}^{n} \frac{1}{n} \mathcal{D}_i & \quad \text{sm}_\text{IV}
\end{align*}
\]

As usual, \(\sum \) stands for the sequence \(\mathcal{N}_1, \ldots, \mathcal{N}_n \). Since the relation \(\Rightarrow \) is inductively defined, any proof of judgments involving \(\Rightarrow \) is a finite object. If \(\pi \) is such a proof for \(M \Rightarrow \mathcal{D} \), we write \(\pi : M \Rightarrow \mathcal{D} \). The proof \(\pi \) is said to be structurally smaller or equal to another proof \(\rho \) if the number of rule instances in \(\pi \) is smaller or equal to the number of rule instances in \(\rho \). In this case, we write \(\pi \preceq \rho \).

First of all, observe that \(\Rightarrow \) is not a function: many different distributions can be put in correspondence with the same term \(M \). Moreover, there is one distribution \(\mathcal{D} \) such that \(M \Rightarrow \mathcal{D} \) always holds, independently on \(M \), namely \(\emptyset \). Actually, rule \(\text{se}_\text{IV} \) allows you to “give up” while looking for a distribution for \(M \) and conclude that \(M \) is in relation with \(\emptyset \). In other words, \(\Rightarrow \) is not meant to be a way to attribute one distribution to every term, but rather to find all finitary approximants of the (unique!) distribution we are looking for (see Definition 6).

The set of the distributions that a term evaluates to is a direct set:

Lemma 1 For every term \(M \), if \(M \Rightarrow \mathcal{D} \) and \(M \Rightarrow \mathcal{E} \), then there exists a distribution \(\mathcal{F} \) such that \(M \Rightarrow \mathcal{F} \) with \(\mathcal{D} \geq \mathcal{F} \) and \(\mathcal{E} \geq \mathcal{F} \).

Proof. By induction on the structure of derivations for \(M \Rightarrow \mathcal{D} \).

- If \(M \Rightarrow \emptyset \) then \(\mathcal{F} = \emptyset \).
- If \(M \Rightarrow \{V^1\} \) we have that \(\mathcal{E} = \emptyset \), or \(\mathcal{E} = \{V^1\} \), then \(\mathcal{F} = \mathcal{D} \).
- If \(M \Rightarrow N_1, \ldots, N_k \) and \(N_i \Rightarrow \mathcal{D}_i \) for \(i = 1, \ldots, k \), there are some cases:
 - If \(\mathcal{E} = \emptyset \), then \(\mathcal{F} = \mathcal{D} \).
 - If \(\mathcal{E} \neq \emptyset \), then \(\mathcal{E} = \sum_{i=1}^{k} \frac{1}{k} \mathcal{E}_i \), where \(N_i \Rightarrow \mathcal{E}_i \) for \(i = 1, \ldots, k \). Now, by inductive hypothesis, there exist distributions \(\mathcal{F}_i \) such that \(N_i \Rightarrow \mathcal{F}_i \) and \(\mathcal{E}_i \leq \mathcal{F}_i \) for \(i = 1, \ldots, k \). We have \(\mathcal{F} = \sum_{i=1}^{k} \frac{1}{k} \mathcal{F}_i \), and by definition \(\mathcal{D} \leq \mathcal{F} \) and \(\mathcal{E} \leq \mathcal{F} \).

This concludes the proof. \(\square \)

We are now ready to define what the small-step semantics of any term is:

Definition 6 The (call-by-value) small-step semantics of a lambda term \(M \in \Lambda \) is the distribution \(\mathcal{S}_\text{IV}(M) \) defined as \(\sup_{M \Rightarrow \mathcal{D}} \mathcal{D} \).

Please observe that such a distribution is always guaranteed to exist, precisely because of Lemma 1. Indeed

\[
\sum \left(\sup_{M \Rightarrow \mathcal{D}} \mathcal{D} \right) = \sup_{M \Rightarrow \mathcal{D}} \left(\sum \mathcal{D} \right) \leq 1,
\]

since \(\sum \mathcal{D} \) is at most 1, by hypothesis.

Example 2 The term \(\lambda x.x)(\lambda x.x) \) evaluates to \(\emptyset \), by means of rules \(\text{se}_\text{IV} \), and to \(\mathcal{E} = \{\lambda x.x^1\} \), by means of rules \(\text{sm}_\text{IV} \) and \(\text{sv}_\text{IV} \). By definition, \(\mathcal{S}_\text{IV}(M) = \mathcal{E} \).
5.1.2 Coinductive CbV Small-step Semantics for Divergence

Divergence is captured by another, coinductively defined binary relation \Rightarrow_∞ between Λ_\oplus and $\mathbb{R}_{[0,1]}$. Rules defining the underlying inference systems are those obtained from

$$
\frac{\nu}{V \Rightarrow_\infty \nu} \quad \frac{M \Rightarrow_\nu N \cdot \mathcal{N}_i \Rightarrow_\infty \nu}{M \Rightarrow_\infty \bigoplus_{i=1}^n \mathcal{P}_i} \quad \frac{\mathcal{D}_i}{\mathcal{M}}
$$

where \mathcal{N} is N_1, \ldots, N_n.

The relation \Rightarrow_∞ deals naturally with infinite computations, being coinductively defined. This allows to derive the divergence probability p of a term in Λ_\oplus. Rules \mathcal{D}_i and \mathcal{M} can be read as follows: values diverge with probability 0, while probability of divergence for a term M is equal to the normalized sum of its reducts’ probabilities of divergence. The following example stresses a crucial point:

Example 3 Let us consider the well-known diverging term $\Omega = \Delta \Delta$, where $\Delta = \lambda x.xx$. We would like to be able to prove that $\Omega \Rightarrow_\infty 1$, namely that Ω diverges with probability 1. Doing that formally requires proving that some sets of judgments A including $\Omega \Rightarrow_\infty^\infty$ is consistent with respect to $\Rightarrow_\infty^\infty$. Actually we can choose A as $\Omega \Rightarrow_\infty^1$, since $\Omega \Rightarrow_\infty^1$ can be easily derived from itself by rule \mathcal{M}. The trouble is that in the same way we can derive $\Omega \Rightarrow_\infty^\infty p$ for every possible $0 \leq p \leq 1$. So, in a sense, \Rightarrow_∞ is inconsistent.

Example 3 shows that not all probabilities attributed to terms via \Rightarrow_∞ are accurate. Actually, a good definition consists in taking the divergence probability Ω of any term M, $\mathcal{D}_\Omega(M)$ simply as $\sup_{M \Rightarrow_\infty p} p$. As an example, $\mathcal{D}_\Omega(\Omega) = 1$, since $M \Rightarrow_\infty^\infty$ and, clearly, one cannot go beyond 1.

5.1.3 Coinductive CbV Small-Step Semantics for Convergence

If one takes the inductive semantics from Section 5.1.1, drops \mathcal{S}_ν and interpret everything coinductively, what came out is an alternative semantics for convergence:

$$
\frac{V = \mathcal{S}_\nu \{V'\}}{V \Rightarrow_\mathcal{S}_\nu \{V'\}} \quad \frac{M \Rightarrow_\nu N \Rightarrow_\mathcal{S}_\nu \{V'\}}{M \Rightarrow_\mathcal{S}_\nu \sum_{i=0}^n \mathcal{P}_i} \quad \frac{\mathcal{M}}{\mathcal{S}_\nu \{V'\}}
$$

Interpreting everything coinductively has the effect of allowing infinite computations to be modeled. But this allows to “promise” to reach a certain distribution without really being able to fulfill this:

Example 4 Consider again Ω. One would like to be able to prove that $\Omega \Rightarrow_\mathcal{S}_\nu \emptyset$. Unfortunately, the coinductive interpretation of the formal system above contains $\Omega \Rightarrow_\mathcal{S}_\nu \emptyset$ for every distribution \emptyset, as can be easily verified.

The solution to the problem highlighted by the example above is just defining the coinductive semantics of any term M just as $\mathcal{S}_\mathcal{S}_\nu(M) = \inf_{M \Rightarrow_\mathcal{S}_\nu \emptyset} \emptyset$. Clearly, $\mathcal{S}_\mathcal{S}_\nu(\Omega) = \emptyset$.

5.2 CbV Big-Step Semantics

An alternative style to give semantics to programming languages is the so-called big-step semantics. Big-step semantics is more compositional than small-step: the meaning of a term can be obtained from the meanings of its sub-terms. Probabilistic big step semantics for Λ_\oplus can be given by a binary relation $\downarrow_\mathcal{S}_\nu$ between Λ_\oplus and distributions. It is the coinductive interpretation of (all instances of) the following rules:

$$
\frac{M \downarrow_\mathcal{S}_\nu \emptyset \cdot N \downarrow_\mathcal{S}_\nu \emptyset \cdot \{P\{x/V\} \downarrow_\mathcal{S}_\nu \emptyset_p \cdot F_{P,V}\}_{x: P \in S(\emptyset), V \in S(\emptyset)}}{M \cdot N \downarrow_\mathcal{S}_\nu \emptyset \cdot \mathcal{S}_{P,V}(\lambda x \cdot P) \cdot \mathcal{S}(V) \cdot F_{P,V}}
$$

where \emptyset is consistent with respect to \Rightarrow_∞.
The most interesting rule is definitely \(\text{bs}_v \): to give semantics to an application \(MN \), we first give semantics to \(M \) and \(N \), obtaining two distributions \(\mathcal{D} \) and \(\mathcal{E} \), respectively. Then, for every \(\lambda x.P \) in \(S(\mathcal{D}) \) and for every \(V \) in \(S(\mathcal{E}) \), we evaluate \(P[x/V] \), obtaining some distributions \(\mathcal{F}_{P,V} \). The meaning of \(MN \) is nothing more than the sum of all such distributions \(\mathcal{F}_{P,V} \), each weighted by the probability of getting \(\lambda x.P \) and \(V \) in \(\mathcal{D} \) and \(\mathcal{E} \), respectively. This way of defining the big-step semantics of applications can be made simpler, at the price of making the task of deriving semantic assertions harder, by replacing the premise \(\{P[x/V]\} \mathcal{D} \mathcal{F}_{P,V} \lambda x.P, P \in S(\mathcal{D}), V \in S(\mathcal{E}) \) of rule \(\text{bs}_v \) with \(\{P[x/V]\} \mathcal{F}_{P,V} \lambda x.P, P \in \Lambda_\mathcal{F}, V \in \text{Val} \).

Another interesting rule is \(\text{bs}_v \). Please observe how the distributions \(\mathcal{D} \) and \(\mathcal{E} \) must be normalized by \(\sum \mathcal{E} \) and \(\sum \mathcal{D} \) (respectively) when computing the result. This reflects call-by-value evaluation: if any of \(M \) and \(N \) diverges, their sum must diverge, too.

Like \(\Rightarrow_\lambda \) and \(\Rightarrow_\text{CV} \), the relation \(\subseteq_\text{CV} \) is not a function: many possible distributions can be assigned to the same term \(M \), in particular when \(M \) (possibly) diverges. In particular, distributions which somehow overapproximate the “real one” can always be attributed to \(M \) by the rules above. Thus, we define the big-step semantics of each lambda-term in the following way:

Definition 7 The (call-by-value) coinductive big-step semantics of a lambda term \(M \in \Lambda_\mathcal{D} \) is the distribution \(\mathcal{B}_{\text{CV}}(M) \) defined as \(\inf_{M \subseteq_\text{CV} \mathcal{D}} \mathcal{D} \).

Example 5 Let us consider again \(\Omega \), from Example 3. As it can be verified, \(\Omega \subseteq_\text{CV} \mathcal{D} \) for all possible distributions \(\mathcal{D} \). To formally prove that, we need to find a consistent set \(A \) (with respect to \(\subseteq_\text{CV} \)) containing all judgments in the form \(\Omega \subseteq_\text{CV} \mathcal{D} \). \(A \) is actually the set

\[
\{ \Delta \subseteq_\text{CV} \{ \Delta_1 \} \} \cup \{ \Omega \subseteq_\text{CV} \mathcal{D} | \mathcal{D} : \text{Val} \rightarrow [0,1] \}.
\]

Clearly, \(A \) is consistent, since any judgment in \(A \) can be obtained from other judgments in \(A \) in one deduction step:

- \(\Delta \subseteq_\text{CV} \{ \Delta_1 \} \) by rule \(\text{bv}_v \).
- \(\Delta \subseteq_\text{CV} \{ \Delta_1 \} \) and \(\Omega \subseteq_\text{CV} \mathcal{D} \), one can easily derive \(\Omega \subseteq_\text{CV} \mathcal{D} \) by rule \(\text{bs}_v \).

As a consequence, \(\mathcal{B}_{\text{CV}}(\Omega) = \inf_{M \subseteq_\text{CV} \mathcal{D}} \mathcal{D} = \emptyset \).

One may wonder whether an inductive big step semantics can be defined for \(\Lambda_\mathcal{F} \). The answer is positive: one only needs to add a rule attributing the empty distribution to any terms, in the spirit of the small-step inductive semantics from Section 5.1.1. In other words, we obtain the system

\[
\begin{align*}
M \subseteq_\text{CV} \{ \emptyset \} & \quad \text{bv}_v \quad M \subseteq_\text{CV} \mathcal{D} N \subseteq_\text{IV} \mathcal{E} \quad \{P[x/V]\} \subseteq_\text{IV} \mathcal{F}_{P,V} \lambda x.P, P \in S(\mathcal{D}), V \in S(\mathcal{E}) \\
M \oplus N \subseteq_\text{IV} \frac{1}{2} \mathcal{D} + \sum \frac{1}{2} \mathcal{E} + \sum \mathcal{D} & \quad \text{bs}_v \quad M \oplus N \subseteq_\text{IV} \frac{1}{2} \mathcal{D} + \sum \mathcal{E} + \frac{1}{2} \mathcal{E} + \sum \mathcal{D} \\
V \subseteq_\text{IV} \{ V_1 \} & \quad \text{bv}_v \quad M \subseteq_\text{IV} \mathcal{D} N \subseteq_\text{IV} \mathcal{E} \quad \mathcal{B}_{\text{IV}}(M) \text{ of an term } M \text{ is simply } \sup_{M \subseteq_\text{IV} \mathcal{D}} \mathcal{D}.
\end{align*}
\]

As can be expected, the inductive big step semantics \(\mathcal{B}_{\text{IV}}(M) \) of an term \(M \) is simply \(\sup_{M \subseteq_\text{IV} \mathcal{D}} \mathcal{D} \). This is similar to the semantics considered by Jones [9].

5.3 Divergence and Convergence in CbV Small-step Semantics

In the last two sections, various operational semantics for both convergence and divergence have been introduced. Clearly, one would like them to be essentially equivalent, i.e., one would like them to attribute the same meaning to programs.

In this section, divergence and convergence small-step semantics will be compared and proved equivalent: the probability of divergence of \(M \) obtained through \(\Rightarrow_\infty \) will be proved to be equal to
1 − \sum S_N(M). In Section 5.4 small-step and big-step semantics for convergence will be proved to produce identical outcomes.

The first step consists in proving that \(1 − \sum S_N(M)\) is a lower bound to divergence probability of any term \(M\).

Theorem 1 For every term \(M\), \(M \Rightarrow^\infty_1 \sum S_N(M)\).

Proof. We can prove that all judgments \(M \Rightarrow^\infty_1 \sum S_N(M)\) belong to the coinductive interpretation of the underlying formal system \(\Phi\). To do that, we need to prove that the set \(A\) of all these judgements is consistent, i.e. that \(A \subseteq F_\Phi(A)\). This amounts to show that if \(c \in A\), then there is a derivation for \(c\) whose immediate premises are themselves in \(A\). Let’s distinguish two cases:

• If \(M\) is a value \(V\), then \(M \Rightarrow^\infty_1\) and \(S_N(M) = \{V^1\}\). The thesis easily follows.

• If \(M\) is not a value, then \(M \Rightarrow^* N\), with \(N = N_1, \ldots, N_n\). Now, consider the judgements \(N_i \Rightarrow^\infty_1 \sum S_N(N_i)\), with \(i \in [1,n]\): they are all in the set \(A\). Finally, consider the judgement \(M \Rightarrow^\infty_1 \sum N_i \frac{1}{n}(1−\sum N_i)\): it is in \(F_\Phi(A)\) because of the presence of rule \(\text{dm}_N\):

\[
\frac{M \Rightarrow^* N \quad N_i \Rightarrow^\infty_1}{M \Rightarrow^\infty_1 \sum N_i \frac{1}{n}(1−\sum N_i)}
\]

It remains to show that \(\sum S_N(M) = \sum_{i=1}^n \frac{1}{n} \sum S_N(N_i)\):

\[
\sum S_N(M) = \sum_{M \Rightarrow^* N} \frac{1}{n} \sum S_N(N_i) = \sum_{M \Rightarrow^* N} \frac{1}{n} \sum S_N(N_i)
\]

This concludes the proof. \(\square\)

We need something else, however, namely that summing some divergence probability and the convergence probability obtained through convergence semantics, we cannot go beyond 1:

Proposition 1 If \(M \Rightarrow^\infty_1\) and \(M \Rightarrow^* \mathcal{D}\), then \(p + \sum \mathcal{D} \leq 1\).

Proof. The proof goes by induction on the structure of the derivation for \(M \Rightarrow^* \mathcal{D}\):

• If the only rule in the derivation is

\[
\frac{}{M \Rightarrow^* \emptyset}
\]

then \(\mathcal{D} = \emptyset\) and \(\sum \mathcal{D} = 0\). As a consequence, \(p + \sum \mathcal{D} = p \leq 1\) by definition of the divergence relation.

• If the only rule in the derivation is

\[
\frac{V \Rightarrow^* \{V^1\}}{M \Rightarrow^* \{V^1\}}
\]

then \(\sum \mathcal{D} = 1\) and \(M \Rightarrow^\infty_1\). As a consequence \(p + \sum \mathcal{D} \leq 1\).

• If the derivation has the form

\[
\frac{M \Rightarrow^* N \quad N_i \Rightarrow^* \mathcal{D}_i}{M \Rightarrow^* \sum_{i=1}^n \frac{1}{n} \mathcal{D}_i}
\]

then we apply the induction hypothesis on each \(N_i \Rightarrow^* \mathcal{D}_i\) for \(i \in [1,n]\). For each \(i \in [1,n]\), \(\sum \mathcal{D}_i \leq 1 − p_i\), where \(p_i\) is such that \(N_i \Rightarrow^\infty_1\). Then we have:

\[
\sum \mathcal{D} = \sum_{i=1}^n \frac{1}{n} \mathcal{D}_i = \sum_{i=1}^n \frac{1}{n} \sum \mathcal{D}_i \leq \sum_{i=1}^n \frac{1}{n} (1 − p_i)
\]

\[
= 1 − \sum_{i=1}^n \frac{1}{n} p_i = 1 − p.
\]
This concludes the proof.

Everything can be now glued together as follows, exploiting the density of real numbers:

Corollary 1 For every M, $\mathcal{D}_N(M) + \sum \mathcal{S}_N(M) = 1$.

Proof. $\mathcal{D}_N(M) + \sum \mathcal{S}_N(M) \geq 1$ by Theorem 1. Suppose, by way of contradiction, that $\mathcal{D}_N(M) + \sum \mathcal{S}_N(M) > 1$. This implies $M \Rightarrow^p \not\Rightarrow^\omega$ where $p + \sum \mathcal{D}_N(M) > 1$. This, in turn, implies that $p + \sum \mathcal{S}_N(M) > 1$ for some $M \Rightarrow_N \not\Rightarrow^\omega$. And this is not possible by Proposition 1.

5.4 Relating the Various Definitions for Convergence

Our goal in this section consists in proving that the four ways we have defined the semantics of a term in Λ^\oplus (inductive and coinductive, big-step and small-step semantics) attribute identical meanings to any term. One possibility could be to proceed by “proving” three edges of the following diagram:

$$
\begin{array}{ccc}
S_N & \rightarrow & S_CV \\
| & | & |
B_N & \rightarrow & B_CV
\end{array}
$$

The vertical edges relate two formulations given with identical “inductive flavors” but differing as to whether they are big-step or small-step. Conversely, horizontal edges put in correspondence two formulations which are both big-step or small step, but which differ as to which kind of interpretation is taken over the same set of rules. Horizontal edges are definitely more interesting to be proved, but vertical ones are important, too. In order to avoid tedious and long (but not necessarily informative) proofs, we only prove the diagonal edge shown below in this paper:

$$
\begin{array}{ccc}
S_N \searrow & S_CV \\
| & | & |
B_N \swarrow & B_CV
\end{array}
$$

This proof shows the difficulties of both “vertical” and “horizontal” edges.

Before embarking in the proof of this result, a brief explanation of the architecture of the proof is maybe useful.

Consider any term M, and define two sets of distributions M^S_N and M^B_CV as, respectively, the sets of probability distributions which can be attributed to M in small-step semantics and big-step semantics, respectively:

$$
\begin{align*}
M^S_N &= \{ \mathcal{D} \mid M \Rightarrow_N \not\Rightarrow^\omega \mathcal{D} \} \\
M^B_CV &= \{ \mathcal{D} \mid M \not\Rightarrow^C_v \not\Rightarrow^\omega \mathcal{D} \}
\end{align*}
$$

We proceed in two steps:

- First of all, we prove that big-step semantics *dominates* small-step semantics, namely that $\not\Rightarrow^\omega \Rightarrow^\omega$ whenever $\not\Rightarrow^\omega \mathcal{D} \in M^B_CV$ and $\not\Rightarrow^\omega \mathcal{D} \in M^S_N$. This way, we are sure that $B_CV(M) \geq S_N(M)$. Details are in Section 5.4.1 below.

- Then, we prove that small step semantics can itself be derived using big-step semantics, namely that $S_N(M) \in M^B_CV$. This way, we immediately obtain that $B_CV(M) \leq S_N(M)$, since $B_CV(M)$ is a minorizer of distributions in M^B_CV. Details are in Section 5.4.2.

As a consequence, $M^S_N = M^B_CV$. Figure 1 illustrates the architecture of the proof.
5.4.1 Big-step Dominates Small-step

The fact any distribution obtained through big-step semantics is bigger than any distribution obtained through small-step semantics can be proved by induction on the structure of (finite!) derivations for the latter. Compulsory to that, however, is proving that whenever \(M \Rightarrow N \) and \(M \) is, say, a sum \(N \oplus L \), then appropriate judgments \(N \Rightarrow E \) and \(L \Rightarrow F \) can be derived. Similarly for applications.

The following lemma formalizes these ideas and it is a technical tool for Proposition.\(^2\)

Lemma 2 If \(M \Rightarrow N \), then at least one of the following conditions hold:

1. \(D = \emptyset \);
2. \(M \) is a value \(V \) and \(D = \{ V \} \);
3. \(M \) is an application \(NL \) and there are (finite) distributions \(E \) and \(F \) and for every \(\lambda x.P \in S(E) \) and \(V \in S(F) \) a distribution \(G \) such that:
 1. \(\rho : N \Rightarrow E \) and \(\xi : L \Rightarrow F \) and \(\mu : P \{ x/V \} \Rightarrow G \);
 2. \(\rho, \xi, \mu \preceq \pi \);
 3. \(D \leq \sum_{\lambda x.P \in S(E), V \in S(F)} G(\lambda x.P) \cdot F(V) \cdot G \).
4. \(M \) is a sum \(N \oplus L \) and there are (finite) distributions \(E \) and \(F \) such that:
 1. \(\rho : N \Rightarrow E \) and \(\xi : L \Rightarrow F \);
 2. \(\rho, \xi \preceq \pi \);
 3. \(D \leq \frac{1}{2} \cdot E \cdot (S(E)) + \frac{1}{2} \cdot F \cdot (S(F)) \).

Proof. First of all, let us prove the following auxiliary lemma:

Lemma 3 If \(I \) is finite and \(\pi_i : M \Rightarrow N \) for every \(i \in I \), then there is \(\rho : M \Rightarrow \bigcup_{i \in I} N_i \). Moreover \(\rho \preceq \pi_i \) for some \(i \in I \).

The proof goes by induction on the structure of the proofs in the family \(\{ \pi_i \}_{i \in I} \) (which can actually be done, since \(I \) is finite).

Let’s now go back to Lemma.\(^2\) This is an induction on derivations for \(M \Rightarrow N \). The cases where \(\pi \) is obtained by the rules without premises are trivial. So, we can assume that \(\pi \) has the form

\[
M \Rightarrow Q \quad \{ \pi_i : Q_i \Rightarrow D_i \}_{i \in [1,n]} \quad \sum_{i=1}^n D_i
\]

where \(Q = Q_1, \ldots, Q_n \). Let’s distinguish some cases depending on how the premise \(M \Rightarrow Q \) is derived

- Suppose \(M = NL \) and that \(N \Rightarrow R \). Then \(Q = RL \). From the induction hypothesis applied to the derivations \(\pi_i : R_i \Rightarrow D_i \), we obtain that

- Either all of the \(D_i \) is \(\emptyset \). In this case \(D \) is itself \(\emptyset \), and a derivation for \(M \Rightarrow D \) can be defined.
Suppose applied to the derivations \(\pi \) of \(\mathcal{M} \) and for every \(\lambda x.P \in S(\mathcal{F}) \) and \(V \in S(\mathcal{F}) \) a distribution \(\mathcal{H}^i_{\rho,\pi} \) such that:

\[
\rho_i : R_{k_i} \Rightarrow \Pi_i \\
\xi_i : L \Rightarrow \Pi \mathcal{F}_i \\
\phi^i_{\rho,\pi} : P[V/x] \Rightarrow \Pi \mathcal{H}^i_{\rho,\pi}.
\]

Moreover, \(\rho_i, \xi_i, \phi^i_{\rho,\pi} \prec \pi \), and

\[
\mathcal{D}_{k_i} \leq \sum_{\lambda x.P \in S(\mathcal{F}), V \in S(\mathcal{F})} \mathcal{E}_i(P) \cdot \mathcal{F}_i(V) \cdot \mathcal{H}^i_{\rho,\pi}.
\]

Now, define \(\mathcal{E} \) as the distribution

\[
\mathcal{E} = \sum_{i=1}^{n} \frac{1}{n} \mathcal{D}_i \leq \sum_{i=1}^{m} \frac{1}{n} \mathcal{D}_{k_i} \\
\leq \sum_{i=1}^{m} \frac{1}{n} \left(\sum_{\lambda x.P \in S(\mathcal{F}), V \in S(\mathcal{F})} \mathcal{E}_i(\lambda x.P) \cdot \mathcal{F}_i(V) \cdot \mathcal{H}^i_{\rho,\pi} \right) \\
\leq \sum_{i=1}^{m} \frac{1}{n} \left(\sum_{\lambda x.P \in S(\mathcal{F}), V \in S(\mathcal{F})} \mathcal{E}_i(\lambda x.P) \cdot \mathcal{F}(V) \cdot \mathcal{H}^i_{\rho,\pi} \right) \\
= \sum_{\lambda x.P \in S(\mathcal{F}), V \in S(\mathcal{F})} \frac{1}{n} \left(\mathcal{E}_i(\lambda x.P) \cdot \mathcal{F}(V) \cdot \mathcal{H}^i_{\rho,\pi} \right) \\
\leq \sum_{\lambda x.P \in S(\mathcal{F}), V \in S(\mathcal{F})} \frac{1}{n} \left(\mathcal{E}_i(\lambda x.P) \cdot \mathcal{F}(V) \cdot \mathcal{G}_{\rho,\pi} \right) \\
= \sum_{\lambda x.P \in S(\mathcal{F}), V \in S(\mathcal{F})} \mathcal{E}(\lambda x.P) \cdot \mathcal{F}(V) \cdot \mathcal{G}_{\rho,\pi}.
\]

- Suppose \(M = NL \) and that \(L \Rightarrow \mathcal{R} \). Then \(\mathcal{Q} = N \mathcal{R} \). This case is very similar to the previous one. Note that since we reduce in a call by value setting, then \(N \in \mathcal{V} \) and by means of small-step semantics rules, \(N \Rightarrow_{\Pi} \{N^1\} \).
- Suppose \(M = NL \) and that we are in presence of a redex, i.e. \(N \) is in the form \(\lambda x.R \) and \(L \) is a value and \(L \Rightarrow_{\Pi} \{L^1\} \). Then \(\mathcal{Q} \) is the unary sequence \(R[L/x] \). The thesis easily follows by induction, taking \(\pi : R[L/x] \Rightarrow_{\Pi} \mathcal{F} \) as premise, where \(\mathcal{F} = \sup_{R[L/x] \Rightarrow_{\Pi} \mathcal{G}_k} \mathcal{D}_k \).
- Suppose \(M = N \oplus L \) and that \(N \Rightarrow_{\Pi} \mathcal{R} \). Then \(\mathcal{Q} = \mathcal{R} \oplus L \). From the induction hypothesis applied to the derivations \(\pi_i : R_i \oplus L \Rightarrow_{\Pi} \mathcal{D}_i \), we have that:
We easily get:

\[\square \]

This concludes the proof.

Proof. By induction on the structure of a proof for \(\Rightarrow_{IV} \emptyset \) and \(\emptyset \).

• Either all of the distributions \(\mathcal{D}_i \) is \(\emptyset \), then \(\mathcal{D} \) is \(\emptyset \) itself and a derivation for \(M \Rightarrow_{IV} \emptyset \) can be defined.

• Or there is at least one derivation among \(\pi \) to which case \(3 \) applies. Suppose that \(k_1, \ldots, k_m \) are the indices in \([1, n] \) to which case \(3 \) can be applied. For every \(i \) in \(\{1, \ldots, m\} \), there are two distributions \(\mathcal{E}_i \) and \(\mathcal{F}_i \). Moreover, again by induction hypothesis, we have

\[
\begin{align*}
\rho_i : R_{k_i} \Rightarrow_{IV} \mathcal{E}_i, \\
\xi_i : L \Rightarrow_{IV} \mathcal{F}_i
\end{align*}
\]

Moreover, \(\rho_i, \xi_i \prec \pi_i \) and \(\mathcal{D}_{k_i} \leq \frac{1}{2} \cdot \mathcal{E}_i \cdot (\sum \mathcal{F}_i) + \frac{1}{2} \cdot \mathcal{F}_i \cdot (\sum \mathcal{E}_i) \). Let us define \(\mathcal{E} \) as the distribution \(\sum_{i=1}^{m} \frac{1}{n} \mathcal{E}_i \) and observe that a derivation \(\rho : N \Rightarrow_{IV} \mathcal{E} \) such that \(\rho \prec \pi \) can be defined from the derivation \(\rho_i \). Moreover, a derivation \(\xi : L \Rightarrow_{IV} \mathcal{F} \) can be defined such that \(\xi \prec \pi \), taking \(\mathcal{F} = \sup_{i=1}^{m} \mathcal{F}_i \) and applying Lemma 3. Finally we have:

\[
\begin{align*}
\mathcal{D} &= \sum_{i=1}^{m} \frac{1}{n} \mathcal{D}_{k_i} \\
&\leq \sum_{i=1}^{m} \frac{1}{n} \left(\frac{1}{2} \cdot \mathcal{E}_i \cdot (\sum \mathcal{F}_i) + \frac{1}{2} \cdot \mathcal{F}_i \cdot (\sum \mathcal{E}_i) \right) \\
&= \sum_{i=1}^{m} \frac{1}{n} \left(\frac{1}{2} \cdot \mathcal{E}_i \cdot (\sum \mathcal{F}_i) \right) + \sum_{i=1}^{m} \frac{1}{n} \left(\frac{1}{2} \cdot \mathcal{F}_i \cdot (\sum \mathcal{E}_i) \right) \\
&\leq \sum_{i=1}^{m} \frac{1}{n} \left(\frac{1}{2} \cdot \mathcal{E}_i \cdot (\sum \mathcal{F}) \right) + \sum_{i=1}^{m} \frac{1}{n} \left(\frac{1}{2} \cdot \mathcal{F} \cdot (\sum \mathcal{E}_i) \right) \\
&= \frac{1}{2} \cdot \sum_{i=1}^{m} \frac{1}{n} \mathcal{E}_i \cdot (\sum \mathcal{F}) + \frac{1}{2} \cdot \mathcal{F} \cdot (\sum \mathcal{E}_i) \\
&= \frac{1}{2} \cdot \mathcal{E} \cdot \sum \mathcal{F} + \frac{1}{2} \cdot \mathcal{F} \cdot \sum \mathcal{E}.
\end{align*}
\]

where for each \(i \in [1, m] \), \(\sum \mathcal{F}_i \leq \sum \mathcal{F} \) holds because \(\mathcal{F} \) is the least upper bound of the \(\mathcal{F}_i \).

• Suppose \(M = Z \sqcup L \) (\(Z \in Val \)) and that \(L \Rightarrow_{\nu} \tilde{R} \). Then \(\overline{Q} = Z \sqcup \overline{R} \). Similar to the previous case.

• Suppose \(M = V \sqcup W \) and that \(M \Rightarrow_{\nu} V, W \). In this case the subderivations which we are looking for are \(\pi : V \Rightarrow_{IV} \mathcal{D} \) and \(\rho : W \Rightarrow_{IV} \mathcal{E} \).

This concludes the proof.

Now, suppose that \(M \Rightarrow_{IV} \mathcal{D} \) and \(M \Downarrow_{CV} \mathcal{E} \). Lemma 2 provides all what is needed to “unfold” the hypothesis \(M \Rightarrow_{IV} \mathcal{D} \) and obtain judgments matching exactly those coming from \(M \Downarrow_{CV} \mathcal{E} \). We easily get:

Proposition 2 If \(M \Rightarrow_{IV} \mathcal{D} \) and \(M \Downarrow_{CV} \mathcal{E} \), then \(\mathcal{D} \leq \mathcal{E} \).

Proof. By induction on the structure of a proof for \(M \Rightarrow_{IV} \mathcal{D} \), applying Lemma 2 and doing some case analysis based on its outcome:

• If \(\mathcal{D} = \emptyset \), then \(\mathcal{D} \leq \mathcal{E} \) trivially.

• If \(M = V \) and \(\mathcal{D} = \{V^1\} \), then \(\mathcal{E} = \mathcal{D} \), because the only rule for values in the big step semantic is

\[
V \Downarrow_{CV} \{V\}
\]
• If M is an application NL and distributions $\mathcal{F}, \mathcal{G}, \mathcal{H}_{P,V}$ and derivations $\rho, \xi, \mu_{P,V}$ exist as in Lemma 2 we can observe, by induction hypothesis, that there exist distributions \mathcal{I} and \mathcal{J} such that $N \Downarrow CV \mathcal{I}$, $L \Downarrow CV \mathcal{J}$ where $\mathcal{I} \geq \mathcal{F}$ and $\mathcal{J} \geq \mathcal{G}$. Then we have that $S(\mathcal{I}) \supseteq S(\mathcal{F})$ and $S(\mathcal{J}) \supseteq S(\mathcal{G})$. Now, for every $\lambda x.P \in S(\mathcal{F})$ and $V \in S(\mathcal{G})$, suppose $\mathcal{H}_{P,V}$ is such that $P\{V/x\} \Downarrow CV \mathcal{H}_{P,V}$. Again by induction hypothesis, we obtain that $\mathcal{H}_{P,V} \geq \mathcal{H}_{P,V}$. Finally:

$$\mathcal{D} \leq \sum_{\lambda x.P \in S(\mathcal{F}), V \in S(\mathcal{G})} \mathcal{F}(\lambda x.P) \cdot \mathcal{G}(V) \cdot \mathcal{H}_{P,V}$$

$$\leq \sum_{\lambda x.P \in S(\mathcal{F}), V \in S(\mathcal{G})} \mathcal{J}(\lambda x.P) \cdot \mathcal{G}(V) \cdot \mathcal{H}_{P,V}$$

$$\leq \sum_{\lambda x.P \in S(\mathcal{F}), V \in S(\mathcal{G})} \mathcal{I}(\lambda x.P) \cdot \mathcal{G}(V) \cdot \mathcal{H}_{P,V}$$

$$= \mathcal{E}.$$

• If M is $N \oplus L$, we can proceed exactly as in the previous case. In fact, there exist distributions \mathcal{F}, \mathcal{G} and derivations ρ, ξ as in Lemma 2 and by induction hypothesis we can observe that for any distributions \mathcal{I} and \mathcal{J} such that $N \Downarrow CV \mathcal{I}$ and $L \Downarrow CV \mathcal{J}$, $\mathcal{I} \geq \mathcal{F}$ and $\mathcal{J} \geq \mathcal{G}$ hold. We can take \mathcal{I} such that $S(\mathcal{I}) \supseteq S(\mathcal{F})$ and $\mathcal{J}(V) \geq \mathcal{F}(V)$ for each $V \in S(\mathcal{G})$, and we can take \mathcal{J} such that $S(\mathcal{J}) \supseteq S(\mathcal{G})$ and $\mathcal{J}(V) \geq \mathcal{G}(V)$ for each $V \in S(\mathcal{F})$. Then we have:

$$\mathcal{D} \leq \frac{1}{2} \cdot \mathcal{F} \cdot (\sum \mathcal{I}) + \frac{1}{2} \cdot \mathcal{J} \cdot (\sum \mathcal{F})$$

$$\leq \frac{1}{2} \cdot \mathcal{I} \cdot (\sum \mathcal{J}) + \frac{1}{2} \cdot \mathcal{J} \cdot (\sum \mathcal{I})$$

$$= \mathcal{E}.$$

This concludes the proof.

5.4.2 Small-Step is in Big-Step

Whenever $M \Rightarrow_N \mathcal{D}$ and M is not a value, one can always “decompose” \mathcal{D} and find some judgments about the immediate subterms of M. This is Lemma 2. If we want to prove that the small-step semantics $\mathcal{E}_N(M)$ of M can be itself attributed to M in the big-step case, we should somehow prove the converse, namely that judgments about the immediate subterms of M can be packaged into an analogous judgment for M.

Lemma 4 Let $M \in \Lambda_0$ be any term. Then:
1. If M is a value V and $M \Rightarrow_{N} \mathcal{D}$, then $\mathcal{D} \subseteq \{V^1\}$.
2. If M is an application NL, $N \Rightarrow_{N} \mathcal{E}$, $L \Rightarrow_{N} \mathcal{F}$, $\{P\{V/x\} \Rightarrow_{N} \mathcal{G}_{P,V}\}_{\lambda x.P \in S(\mathcal{E}), V \in S(\mathcal{F})}$ then there exist a distribution \mathcal{D} such that $M \Rightarrow_{N} \mathcal{D}$ and $\mathcal{D} \geq \sum_{\lambda x.P \in S(\mathcal{E}), V \in S(\mathcal{F})} \mathcal{E}(\lambda x.P) \cdot \mathcal{F}(V) \cdot \mathcal{G}_{P,V}$.
3. If M is a sum $N \oplus L$, $N \Rightarrow_{N} \mathcal{E}$, $L \Rightarrow_{N} \mathcal{F}$ then there exist a distribution \mathcal{D} such that $M \Rightarrow_{N} \mathcal{D}$ and $\mathcal{D} \geq \frac{1}{2} \cdot \mathcal{E} \cdot \sum \mathcal{F} + \frac{1}{2} \cdot \mathcal{E} \cdot \sum \mathcal{F}$.

Proof. Let us prove the three statements separately:

• If M is a value V, then the only possible judgments involving M are $M \Rightarrow_{N} \{V^1\}$ and $M \Rightarrow_{N} \emptyset$. The thesis trivially holds.

• If M is an application NL, then we prove statement 2 by induction on the derivations $N \Rightarrow_{N} \mathcal{E}$ and $L \Rightarrow_{N} \mathcal{F}$. Let’s distinguish some cases:

 • If $N \Rightarrow_{N} \emptyset$, then $\sum \mathcal{E}(\lambda x.P) \cdot \mathcal{F}(V) \cdot \mathcal{G}_{P,V} = \emptyset$. We derive $M \Rightarrow_{N} \emptyset$ by means of the rule \mathcal{E}_N and the thesis holds.

 • If $N \Rightarrow_{N} \mathcal{E} \neq \emptyset$, suppose that the least rule applied in the derivation is

$$\frac{N \Rightarrow_{R_i} R_i \Rightarrow_{N} \mathcal{E}_i}{N \Rightarrow_{N} \sum_{i=1}^{n} \mathcal{E}_i}$$
Note that $E = \sum_{i=1}^{n} \frac{1}{n} E_i$. It is possible to apply the induction hypothesis on every $R_i L$: if $R_i \Rightarrow_{IV} E_i$, $L \Rightarrow_{IV} F$ and $P(V/x) \Rightarrow_{IV} F_{P,V}$ (for $\lambda x.P \in S(E_i) \subseteq S(E)$, $V \in S(F)$) follows that $R_i L \Rightarrow_{IV} H_i$ with $H_i \geq \sum_{\lambda x.P \in S(E_i), V \in S(F)} \frac{1}{n} E_i F (\lambda x.P) F (V) F_{P,V}$. We are able to construct a derivation D in the following way:

$$NL \Rightarrow_{\gamma} R L \quad R_i L \Rightarrow_{IV} H_i$$

$$NL \Rightarrow_{IV} \sum_{i=1}^{n} \frac{1}{n} H_i$$

And finally we have:

$$D = \sum_{i=1}^{n} \frac{1}{n} H_i \geq \sum_{i=1}^{n} \frac{1}{n} \left(\sum_{\lambda x.P \in S(E_i), V \in S(F)} E_i F (\lambda x.P) F (V) F_{P,V} \right)$$

$$= \sum_{i=1}^{n} \frac{1}{n} \left(\sum_{\lambda x.P \in S(E_i), V \in S(F)} E_i F (\lambda x.P) F (V) F_{P,V} \right)$$

$$= \sum_{\lambda x.P \in S(E_i), V \in S(F)} \left(\sum_{i=1}^{n} \frac{1}{n} E_i F (\lambda x.P) F (V) F_{P,V} \right)$$

$$= \sum_{\lambda x.P \in S(E_i), V \in S(F)} D (\lambda x.P) F (V) F_{P,V}$$

- Other cases follow can be handled similarly to the previous one.
- M is a sum $N \oplus L$. We prove the result by induction on the derivations $N \Rightarrow_{IV} E$ and $L \Rightarrow_{IV} F$.
 - If $N \Rightarrow_{IV} \emptyset$, then $\frac{1}{2} \cdot \emptyset \cdot \sum F + \frac{1}{2} \cdot \emptyset \cdot \sum \emptyset = \emptyset$. We derive $M \Rightarrow_{IV} \emptyset$ by means of the rule se_{IV} and the thesis holds.
 - If N is a value V, the only interesting case is the one in which L is not a value and also $L \Rightarrow_{IV} F$ with $F \neq \emptyset$ (in fact if $L \Rightarrow_{IV} \emptyset$ we are in the previous case and if L is a value the proof is trivial). Then $M = V \oplus L$. Let us consider the derivation of the judgment $L \Rightarrow_{IV} F$: the last rule applied in the derivation is

$$L \Rightarrow_{\gamma} R \quad R_i \Rightarrow_{IV} F_i$$

$$L \Rightarrow_{IV} \sum_{i=1}^{n} \frac{1}{n} F_i$$

where $F = \sum_{i=1}^{n} \frac{1}{n} F_i$. Observe that $M \Rightarrow_{\gamma} V \oplus R$. We can apply the induction hypothesis to each $L \Rightarrow_{IV} \sum_{i=1}^{n} \frac{1}{n} F_i$ and to $V \Rightarrow_{IV} \{V^1\}$, and we obtain

$$D_i \geq \frac{1}{2} \cdot \{V^1\} \cdot \sum F_i + \frac{1}{2} \cdot F_i$$

We are able to construct a derivation in the following way:

$$V \oplus L \Rightarrow_{\gamma} V \oplus R \quad V \oplus R_i \Rightarrow_{IV} D_i$$

$$M \Rightarrow_{IV} \sum_{i=1}^{n} \frac{1}{n} D_i$$
Finally we have:
\[
\sum_{i=1}^{n} \frac{1}{n} \mathcal{D}_i \geq \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{2} \cdot \{V^1\} \cdot \sum \mathcal{F}_i + \frac{1}{2} \cdot \mathcal{D}_i \right)
\]
\[
= \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{2} \cdot \{V^1\} \cdot \sum \mathcal{F}_i \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{2} \cdot \mathcal{F}_i \right)
\]
\[
= \frac{1}{2} \cdot \{V^1\} \cdot \left(\sum_{i=1}^{n} \frac{1}{n} \mathcal{F}_i \right) + \frac{1}{2} \sum_{i=1}^{n} \frac{1}{n} \mathcal{F}_i
\]
\[
= \frac{1}{2} \cdot \{V^1\} \cdot \left(\sum \mathcal{F} \right) + \frac{1}{2} \cdot \mathcal{F}
\]

- If \(N \Rightarrow_N \mathcal{E} \), suppose that the least rule applied in the derivation is
 \[
 \frac{N \Rightarrow_N \mathcal{R} \quad \mathcal{R} \Rightarrow_N \mathcal{D}_i}{N \Rightarrow_N \sum_{i=1}^{n} \frac{1}{n} \mathcal{D}_i}
 \]

 Note that \(\mathcal{E} = \sum_{i=1}^{n} \frac{1}{n} \mathcal{D}_i \). It is possible to apply the induction hypothesis on the single \(R_i \oplus L \); then, if \(R_i \Rightarrow_N \mathcal{D}_i \), \(L \Rightarrow_N \mathcal{F} \) we have that \(R_i \oplus L \Rightarrow_N \mathcal{D}_i \) with \(D_i \geq \frac{1}{2} \cdot \mathcal{F}_i \cdot \sum \mathcal{D}_i \). We construct a derivation in the following way:

 \[
 \frac{N \oplus L \Rightarrow_N \mathcal{R} \oplus L \quad \mathcal{R} \oplus L \Rightarrow_N \mathcal{D}_i}{N \Rightarrow_N \sum_{i=1}^{n} \frac{1}{n} \mathcal{D}_i}
 \]

Finally we have:
\[
\sum_{i=1}^{n} \frac{1}{n} \mathcal{D}_i \geq \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{2} \cdot \mathcal{D}_i \cdot \sum \mathcal{F}_i + \frac{1}{2} \cdot \mathcal{D}_i \cdot \sum \mathcal{D}_i \right)
\]
\[
= \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{2} \cdot \mathcal{D}_i \cdot \sum \mathcal{F}_i \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{2} \cdot \mathcal{F}_i \cdot \sum \mathcal{D}_i \right)
\]
\[
= \frac{1}{2} \cdot \sum_{i=1}^{n} \frac{1}{n} \left(\mathcal{D}_i \cdot \sum \mathcal{F}_i \right) + \frac{1}{2} \sum_{i=1}^{n} \frac{1}{n} \left(\mathcal{F}_i \cdot \sum \mathcal{D}_i \right)
\]
\[
= \frac{1}{2} \cdot \mathcal{E} \cdot \sum \mathcal{F} + \frac{1}{2} \cdot \mathcal{F} \cdot \sum \mathcal{E}
\]

- Other cases are trivial.

This concludes the proof. \(\square\)

Lemma 2 and Lemma 4 allows to prove that the \(S_N(\cdot) \) commutes well with the various constructs of \(\Lambda_\oplus \).

Lemma 5 For each term \(M \in \Lambda_\oplus \), then

1. If \(M \) is a value \(V \), then \(S_N(M) = \{V^1\} \);
2. If \(M \) is an application \(NL \), then \(S_N(M) = \sum_{\lambda x.P \in S_N(S_N(N), V \in S_N(S_N(L)))} S_N(N)(\lambda x.P) \cdot S_N(L)(V) \cdot S_N(P\{V/x\}) \);
3. If \(M \) is a sum \(N \oplus L \), then \(S_N(M) = \frac{1}{2} \cdot S_N(N) \cdot \sum S_N(L) + \frac{1}{2} \cdot S_N(L) \cdot \sum S_N(N) \).
Proof. We will use the following fact throughout the proof:

Fact 1 If $M \leadsto_{\nu} N$, then $\sup_{M \leadsto_{\nu} N} \mathcal{G} = \sup_{N \leadsto_{\nu} M} \left(\sum_{i=1}^{n} \frac{1}{n} \mathcal{G}_i \right)$.

The inequalities above can be proved separately:

- If M is a value, the thesis follows by small step semantics rules. Indeed, $M \Rightarrow_{\nu} \emptyset$.
- For the other cases, the (\leq) direction follows from Lemma 2 and Fact 1; the (\geq) direction follows from Lemma 3 and Fact 1.

This concludes the proof. \qed

The fact $S_{\nu}(M)$ can be assigned to M in the big-step semantics is an easy consequence of Lemma 5.

Proposition 3 $M \downarrow_{\nu} S_{\nu}(M)$.

Proof. We will prove the thesis by coinduction: We can prove that all judgments $M \downarrow_{\nu} S_{\nu}(M)$ belong to the coinductive interpretation of the underlying formal system Φ (in this case, the formal system is $\Phi = \{bv_{\nu}, ba_{\nu}, bs_{\nu}\}$). To do that, we need to prove that the set A of all those judgments is consistent, i.e. that $A \subseteq F_{\nu}(A)$. This amounts to show that if $c \in A$, then there is a derivation for c whose immediate premises are themselves in A. Let’s distinguish some cases:

- If $M = V$ then $V \downarrow_{\nu} \{V\}$ by bv_{ν} rule, and $\{V\} = S_{\nu}(V)$ because of Lemma 5.
- If M is an application NL, take the judgment $c_1 = N \downarrow_{\nu} S_{\nu}(N)$, $c_2 = L \downarrow_{\nu} S_{\nu}(L)$ and the family of judgments $\{(P[V/x]) \downarrow_{\nu} S_{\nu}((P[V/x]))\}_{\lambda \cdot x. P \in S_{\nu}(N), V \in S_{\nu}(L)}$: we will prove that the judgment $NL \downarrow_{\nu} S_{\nu}(NL)$ can be derived in a single step from c_1, c_2 and those in the family above by means of ba_{ν} rule. Simply observe that

$$
NL \downarrow_{\nu} S_{\nu}(NL) \quad L \downarrow_{\nu} S_{\nu}(L) \quad \{P[V/x] \downarrow_{\nu} S_{\nu}((P[V/x]))\}_{\lambda \cdot x. P \in S_{\nu}(N), V \in S_{\nu}(L)}
$$

The thesis follows applying Lemma 5.

- If M is a sum $N \oplus L$, take the judgment $c_1 = N \downarrow_{\nu} S_{\nu}(N)$ and $c_2 = M \downarrow_{\nu} S_{\nu}(M)$: we will prove that the judgment $N \oplus L \downarrow_{\nu} S_{\nu}(NL)$ can be inferred in a single step from c_1 and c_2 by means of bs_{ν} rules. Clearly, c_1 and c_2 belong to A. Moreover

$$
N \downarrow_{\nu} S_{\nu}(N) \quad L \downarrow_{\nu} S_{\nu}(L) \quad 1 \cdot S_{\nu}(N) \cdot \sum S_{\nu}(L) + \frac{1}{2} \cdot S_{\nu}(L) \cdot \sum S_{\nu}(N)
$$

and by Lemma 5, case 8 we obtain the thesis.

This concludes the proof. \qed

The equality between big-step and small-step semantics is a corollary of Proposition 2 and Proposition 3.

Theorem 2 $B_{\nu}(M) = S_{\nu}(M)$.

6 Call-by-Name

In Section 5 we endowed Λ_{\oplus} with a call-by-value probabilistic operational semantics and showed that the distribution assigned to any term M is the same in big-step and in small-step semantics, independently on whether they are defined inductively or coinductively. Actually, the same holds in call-by-name: both big-step and small-step semantics can be defined (co)inductively and proved equivalent, following the same path used in call-by-value. In this section, we briefly sketch how this can be done, by defining $B_{\text{CN}}(M)$ and $S_{\nu}(M)$ and by proving they are equivalent.
Definition 8 (Call-by-name Reduction) \(\text{Leftmost reduction } \rightarrow_n \) is the least binary relation between \(\Lambda_\oplus \) and \(\Lambda_\ast \oplus \) such that:

\[
(\lambda x.M)N \rightarrow_n M\{x/N\} \\
MN \rightarrow_n LN \quad \text{if } M \rightarrow_n L \\
M \oplus N \rightarrow_n M, N
\]

Note that, contrarily to call-by-value, in call-by-name it is possible to perform a choice between terms which are not values.

6.1 Small-step Semantics

As for call-by-name, we model separately terminating and non-terminating computations. The rule schema is the same, up to the different reduction relation \(\rightarrow_n \). First of all, there is an inductively defined binary relation \(\Rightarrow_{IN} \) between \(\Lambda_\oplus \) and distributions. Rules are as follows:

\[
M \Rightarrow_{IN} \emptyset \\
V \Rightarrow_{IN} \{V\} \\
M \rightarrow_n N \Rightarrow_{IN} N_i \Rightarrow_{IN} D_i \\
M \rightarrow_n \sum_{i=1}^{n} \frac{1}{n} D_i
\]

\(\mathcal{S}_{IN}(M) \) is the distribution \(\sup_{M \Rightarrow_{IN} \emptyset} \mathcal{D} \). Moreover, there is also another, coinductively defined binary relation between \(\Lambda_\oplus \) and \(\mathbb{R}_{[0,1]} \) capturing divergence. Rules are as follows:

\[
V \Rightarrow_{0}^\infty \\
M \rightarrow_n \{N_i \Rightarrow_{p_i}^\infty \}_{i \in [1,n]} \Rightarrow_{IN} M \Rightarrow_{\sum_{i=1}^{n} \frac{1}{n} p_i}^\infty
\]

\(\mathcal{D}_n(M) \) is nothing more than \(\sup_{M \Rightarrow_{IN} \emptyset} p \). Notice how the differences between call-by-value and call-by-name small-step semantics all come from the reduction relation, since the rules above are analogous to their call-by-value siblings.

As done in Section 5.1.3 for call-by-name, a conductive version of call-by-name small step semantics can be easily defined.

6.2 Big-step Semantics.

We define call-by-name big-step semantics of terms in \(\Lambda_\oplus \) as the co-inductive interpretation of a suitable set of rules. Again, this allow us to capture infinite computations. A coinductively defined binary relation \(\downarrow_{CN} \) between \(\Lambda_\oplus \) and distributions is obtained by taking all instances of the following rules:

\[
V \downarrow_{CN} \emptyset \\
M \downarrow_{CN} \{P\{N/x\} \downarrow_{CN} \mathcal{D}(\lambda x.P) : P \in S(\mathcal{D})\} \\
M \downarrow_{CN} N \downarrow_{CN} \mathcal{E} \\
M \downarrow_{CN} \emptyset \downarrow_{CN} \emptyset \downarrow_{CN} \emptyset
\]

\(\mathcal{B}_{CN}(M) \) is simply the subdistribution \(\inf_{M \downarrow_{CN} \emptyset} \mathcal{D} \). The way binary choices are managed reflects the reduction rules, which allow to evaluate a binary choice to one of its components even if the latter are not values. Indeed, while in call-by-value normalization factors \(\sum \mathcal{D} \) and \(\sum \mathcal{E} \) were necessary, they are not here anymore.

Example 6 Consider the term \(M = \Omega \oplus (\lambda x.x) \). Recall from Example 5 that \(\Omega \Downarrow_{CV} \emptyset \) for every \(\mathcal{D} \). Moreover, \(\lambda x.x \Downarrow_{CV} \{x\} \). This implies \(M \Downarrow_{CV} \emptyset \), and, as a consequence, that \(\mathcal{B}_{CV}(M) = \emptyset \). The same behavior cannot be mimicked in call-by-name. Indeed, while \(\Omega \Downarrow_{CN} \emptyset \) (for every \(\mathcal{D} \)) and \(\lambda x.x \Downarrow_{CN} \{x\} \), the smallest distribution which can be assigned to \(M \) is \(\mathcal{B}_{CN}(M) = \{x\} \).

Inductive call-by-name big step semantics can be obtained adding the rule which assigns the empty distribution to any term and taking the inductive interpretation of the system.
6.3 Comparing the Different Notions

We retrace here results of Section 5.3 and Section 5.4 for call-by-name semantics.

6.3.1 Divergence and Convergence in CbN Small-step Semantics

Convergence and divergence call-by-name small step semantics are proved equivalent by means of the following results.

Proposition 4 If \(M \Rightarrow^\infty_p \) and \(M \Rightarrow_\text{IN} \mathcal{D} \), then \(p + \sum \mathcal{D} \leq 1 \).

Proof. The proof goes by induction on the structure of the derivation for \(M \Rightarrow_\text{IN} \mathcal{D} \).

Theorem 3 For every term \(M \), \(M \Rightarrow^\infty_\text{IN} \).

Proof. By coinduction: it is possible to prove that all judgments \(M \Rightarrow^\infty_\text{IN} \mathcal{D} \) belong to the coinductive interpretation of the underlying formal system \(\Phi \).

6.3.2 Small-step vs. Big-step

We prove here the equivalence between inductive call-by-name small step semantics \(S_\text{IN}(M) \) and coinductive call-by-name big step semantics \(B_\text{CN}(M) \). We use the same proof technique of Section 5.3.

Given any term \(M \), the sets of distributions sets of probability distributions which can be attributed to \(M \) in call-by-name small-step semantics and call-by-name big-step semantics, are respectively defined as \(M_\text{IN} = \{ \mathcal{D} \mid M \Rightarrow_\text{IN} \mathcal{D} \} \) and \(B_\text{CN} = \{ \mathcal{D} \mid M \downarrow_\text{CN} \mathcal{D} \} \). Firstly we prove that big-step semantics dominates small-step semantics (Proposition 5), and this imply \(B_\text{CN}(M) \geq S_\text{IN}(M) \). Successively, we prove again that small step semantics can itself be derived using big-step semantics, namely that \(S_\text{IN}(M) \in B_\text{CN}(M) \) (Proposition 6). As a consequence, \(B_\text{CN}(M) \leq S_\text{IN}(M) \) and finally \(M_\text{IN} = B_\text{CN} \).

Lemma 6 If \(I \) is finite and \(\pi_i : M \Rightarrow_\text{IN} \mathcal{D}_i \) for every \(i \in I \), then there is \(\rho : M \Rightarrow_\text{IN} \sup_{i \in I} \mathcal{D}_i \). Moreover \(\rho \leq \pi_i \) for some \(i \in I \).

Proof. The proof goes by induction on the structure of the proofs in the family \(\{ \pi_i \}_{i \in I} \) (which can actually be done, since \(I \) is finite).

Lemma 7 If \(M \Rightarrow_\text{IN} \mathcal{D} \), then at least one of the following conditions hold:

1. \(\mathcal{D} = \emptyset \);
2. \(M \) is a value \(V \) and \(\mathcal{D} = \{ V \} \);
3. \(M \) is an application \(NL \) and there is a (finite) distribution \(\mathcal{E} \) and for every \(\lambda x.P \in S(\mathcal{E}) \) a distribution \(G_{P,L} \) such that:
 1. \(\rho : N \Rightarrow_\text{IN} \mathcal{E} \) and \(\mu_{P,L} : P\{x/L\} \Rightarrow_\text{IN} G_{P,L} \);
 2. \(\rho \cup \mu_{P,L} \preceq \pi ;\)
 3. \(\mathcal{D} \leq \sum_{\lambda x.P \in S(\mathcal{E})} (\lambda x.P) \cdot G_{P,L} . \)
4. \(M \) is a sum \(N \oplus L \) and there are (finite) distributions \(\mathcal{E} \) and \(\mathcal{F} \) such that:
 1. \(\rho : N \Rightarrow_\text{IN} \mathcal{E} \) and \(\xi : L \Rightarrow_\text{IN} \mathcal{F} ;\)
 2. \(\rho \cup \xi \preceq \pi ;\)
 3. \(\mathcal{D} \leq \frac{1}{2} \cdot \mathcal{D} \cdot + \frac{1}{2} \cdot \mathcal{F} . \)

Proof. This is an induction on derivations for \(M \Rightarrow_\text{IN} \mathcal{D} \). The cases where \(\pi \) is obtained by the rules without premises are trivial. So, we can assume that \(\pi \) has the form

\[
M \Rightarrow_\gamma Q \quad \{ \pi_i : Q_i \Rightarrow_\text{IN} \mathcal{D}_i \}_{i \in [1,n]} \overset{\text{SM}_\text{IN}}{\rightarrow} \quad M \Rightarrow_\text{IN} \sum_{i=1}^{n} \frac{1}{n} Q_i \]

where \(Q \) is \(Q_1, \ldots, Q_n \). Let’s distinguish some cases depending on how the premise \(M \Rightarrow_\gamma Q \) is derived
• Suppose \(M = NL \) and that \(N \mapsto_R \). Then \(Q = RL \). From the induction hypothesis applied to the derivations \(\pi_i : R_i L \Rightarrow_{\text{IN}} D_i \), we obtain that
 - Either all of the \(D_i \) is \(\emptyset \). In this case \(D \) is itself \(\emptyset \), and a derivation for \(M \Rightarrow_{\text{IN}} \emptyset \) can be defined.
 - Or there is at least one among the derivation \(\pi_i \) to which case 3 applies. Suppose that \(k_1, \ldots, k_m \) are the indices in \([1, n]\) to which case 3 can be applied. This means that for every \(i \) in \([1, \ldots, m]\), there is a distribution \(D_i \), and for every \(\lambda x.P \in S(D_i) \) a distribution \(H^i \), such that:

\[
\rho_i : R_{k_i} \Rightarrow_{\text{IN}} D_i;
\]
\[
\phi^i_P : P(L/x) \Rightarrow_{\text{IN}} H^i.
\]

Moreover, \(\rho_i, \phi^i_{g,h} \prec \pi_t \), and

\[
D_{k_i} \leq \sum_{\lambda x.P \in S(D_i)} D_i(P) \cdot H^i.
\]

Now, define \(D \) as the distribution

\[
D = \sum_{i=1}^n \frac{1}{n} D_i \leq \sum_{i=1}^n \frac{1}{n} D_{k_i},
\]

Note that \(S(D) = \bigcup_{i=1}^n S(D_i) \). Clearly, a derivation \(\rho \) for \(N \Rightarrow_{\text{IN}} D \) can be defined such that \(\rho \prec \pi \): simply construct it from the derivations \(\rho_i \) and some derivations for \(R_j \Rightarrow_{\text{IN}} \emptyset \).

Moreover, a derivation \(\mu \) can be defined for every \(\lambda x.P \in S(D) \) in such a way that \(\mu \prec \pi \) (use Lemma 6), \(\mu : P(L/x) \Rightarrow_{\text{IN}} G^i \) and \(G^i = \sup_{i=1}^n H^i \).

This concludes the proof.

\[\square \]

Proposition 5 If \(M \Rightarrow_{\text{IN}} D \) and \(M \Downarrow_{\text{CR}} E \), then \(D \leq E \).

Proof. By induction on the structure of a proof for \(M \Rightarrow_{\text{IN}} D \), applying Lemma 7 and doing some case analysis based on its outcome:

- Suppose \(M = NL \) and that we are in presence of a redex, i.e. \(N \) is in the form \(\lambda x.R \). Then \(E \) is simply \(\{\lambda x.R\} \). From \(R\{L/x\} \Rightarrow_{\text{IN}} D \), the thesis easily follows.
- Suppose \(M = N \uplus L \) and that \(M \Rightarrow_n N, L \). In this case the subderivations which we are looking for are \(\pi : N \Rightarrow_{\text{IN}} D \) and \(\rho : L \Rightarrow_{\text{IN}} E \).

This concludes the proof. \[\square \]
• If $\mathcal{D} = \emptyset$, then $\mathcal{D} \leq \mathcal{E}$ trivially.
• If $M = V$ and $\mathcal{D} = \{V\}$, then $\mathcal{E} = \mathcal{D}$, because the only rule for values in the big step semantic is

\[V \Downarrow \text{CN} \{V\} \]

• If M is an application NL and distributions $\mathcal{F}, \mathcal{H}_{P,L}$ and derivations $\rho, \mu_{P,L}$ exist as in Lemma 7, we can observe, by induction hypothesis, that there exists a distribution \mathcal{I} such that $N \Downarrow \text{CN} \mathcal{I}$, where $\mathcal{I} \geq \mathcal{F}$. Then we have that $S(\mathcal{F}) \geq S(\mathcal{I})$. Now, for every $\lambda x.P \in S(\mathcal{F})$, suppose $\mathcal{H}_{P,L}$ is such that $P[L/x] \Downarrow \text{CN} \mathcal{H}_{P,L}$. Again by induction hypothesis, we obtain that $\mathcal{H}_{P,L} \geq \mathcal{H}_{P,L}$. Finally:

\[
\mathcal{D} \leq \sum_{\lambda x.P \in S(\mathcal{F})} \mathcal{F}(\lambda x.P) \cdot \mathcal{H}_{P,L} \\
\leq \sum_{\lambda x.P \in S(\mathcal{F})} \mathcal{F}(\lambda x.P) \cdot \mathcal{H}_{P,L} \\
\leq \sum_{\lambda x.P \in S(\mathcal{F})} \mathcal{I}(\lambda x.P) \cdot \mathcal{H}_{P,L} \\
= \mathcal{E}.
\]

• If M is $N \oplus L$, we can proceed exactly as for Proposition 2 sum case. This concludes the proof. \qed

Lemma 8 Let $M \in \Lambda_{\oplus}$ be any term. Then:
1. If M is a value V and $M \Rightarrow_{\text{IN}} \mathcal{D}$, then $\mathcal{D} \leq \{V\}$.
2. If M is an application NL, $N \Rightarrow_{\text{IN}} \mathcal{E}$, $\{P[L/x] \Rightarrow_{\text{IN}} \mathcal{G}_{P}\}_{\lambda x.P \in S(\mathcal{E})}$ then there exists a distribution \mathcal{D} such that $M \Rightarrow_{\text{IN}} \mathcal{D}$ and $\mathcal{D} \geq \sum_{\lambda x.P \in S(\mathcal{E})} \mathcal{E}(\lambda x.P) \cdot \mathcal{G}_{P}$.
3. If M is a sum $N \oplus L$, $N \Rightarrow_{\text{IN}} \mathcal{E}$, $L \Rightarrow_{\text{IN}} \mathcal{F}$ then there exists a distribution \mathcal{D} such that $M \Rightarrow_{\text{IN}} \mathcal{D}$ and $\mathcal{D} \geq \frac{1}{2} \cdot \mathcal{E} + \frac{1}{2} \cdot \mathcal{F}$.

Proof. Let us prove the three statements separately:
• If M is a value V, then the only possible judgments involving M are $M \Rightarrow_{\text{IN}} \{V\}$ and $M \Rightarrow_{\text{IN}} \emptyset$. The thesis trivially holds.
• If M is an application NL, then we prove statement 2 by induction on the derivations $N \Rightarrow_{\text{IN}} \mathcal{E}$ and $L \Rightarrow_{\text{IN}} \mathcal{F}$. Let’s distinguish some cases:
 • If $N \Rightarrow_{\text{IN}} \emptyset$, then $\sum_{\mathcal{E}(\lambda x.P) \cdot \mathcal{G}_{P,V} = \emptyset}$. We derive $M \Rightarrow_{\text{IV}} \emptyset$ by means of the rule se_{n} and the thesis holds.
 • If $N \Rightarrow_{\text{IN}} \mathcal{E} \neq \emptyset$, suppose that the least rule applied in the derivation is

\[
N \Rightarrow_{\text{V}} \bar{R} \quad R_{i} \Rightarrow_{\text{IN}} \mathcal{E}_{i} \quad \text{SN}_{m} \\
N \Rightarrow_{\text{IN}} \sum_{i=1}^{n} \frac{1}{n} \mathcal{E}_{i}
\]

Note that $\mathcal{E} = \sum_{i=1}^{n} \frac{1}{n} \mathcal{E}_{i}$. It is possible to apply the induction hypothesis on every $R_{i}L$: if $R_{i} \Rightarrow_{\text{IN}} \mathcal{E}_{i}$ and $P[L/x] \Rightarrow_{\text{IN}} \mathcal{G}_{P}$ (for $\lambda x.P \in S(\mathcal{E}_{i}) \subseteq S(\mathcal{E})$) follows that $R_{i}L \Rightarrow_{\text{IN}} \mathcal{H}_{i}$ with $\mathcal{H}_{i} \geq \sum_{\lambda x.P \in S(\mathcal{E}_{i})} \mathcal{E}_{i}(\lambda x.P) \cdot \mathcal{G}_{P}$. We are able to construct a derivation \mathcal{D} in the following way:

\[
NL \Rightarrow_{\text{V}} \bar{R}L \quad R_{i}L \Rightarrow_{\text{IN}} \mathcal{H}_{i} \quad \text{SN}_{m} \\
NL \Rightarrow_{\text{IN}} \sum_{i=1}^{n} \frac{1}{n} \mathcal{H}_{i}
\]
And finally we have:

\[
\mathcal{D} = \sum_{i=1}^{n} \frac{1}{n} \mathcal{H} \geq \sum_{i=1}^{n} \frac{1}{n} \left(\sum_{\lambda x. \mathcal{P} \in \mathcal{S}(\mathcal{E})} \varepsilon_i(\lambda x. \mathcal{P}) \cdot \mathcal{G}_p \right) \\
= \sum_{i=1}^{n} \frac{1}{n} \left(\sum_{\lambda x. \mathcal{P} \in \mathcal{S}(\mathcal{E})} \varepsilon_i(\lambda x. \mathcal{P}) \cdot \mathcal{G}_p \right) \\
= \sum_{\lambda x. \mathcal{P} \in \mathcal{S}(\mathcal{E})} \left(\sum_{i=1}^{n} \frac{1}{n} \varepsilon_i(\lambda x. \mathcal{P}) \cdot \mathcal{G}_p \right) \\
= \sum_{\lambda x. \mathcal{P} \in \mathcal{S}(\mathcal{E})} \varepsilon(\lambda x. \mathcal{P}) \cdot \mathcal{G}_p.
\]

- Other cases can be handled similarly to the previous one.
- \(M\) is a sum \(N \oplus L\). The proof is trivial.

Lemma 9 For each term \(M \in \Lambda_{c}\), then
1. If \(M\) is a value \(V\), then \(\mathcal{S}_N(M) = \{V^1\}\);
2. If \(M\) is an application \(NL\), then \(\mathcal{S}_N(M) = \sum_{\lambda x. \mathcal{P} \in \mathcal{S}(\mathcal{S}_N(N))} \mathcal{S}_N(N)(\lambda x. \mathcal{P}) \cdot \mathcal{S}_N(P[L/x]);
3. If \(M\) is a sum \(N \oplus L\), then \(\mathcal{S}_N(M) = \frac{1}{2} \cdot \mathcal{S}_N(N) + \frac{1}{2} \cdot \mathcal{S}_N(L)\).

Proof. The inequalities above can be proved separately:
- If \(M\) is a value, the thesis follows by small step semantics rules. Indeed, \(M \Rightarrow_N 0\).
- For the other cases, the \((\leq)\) direction follows from Lemma \(8\) and Fact \(1\) \(\geq\) direction follows from Lemma \(8\) and Fact \(1\).

Proposition 6 \(M \vdash_{CN} \mathcal{S}_N(M)\).

Proof. We will prove the thesis by coinduction: We can prove that all judgments \(M \vdash_{CN} \mathcal{S}_N(M)\) belong to the coinductive interpretation of the underlying formal system \(\Phi\) (in this case, the formal system is \(\Phi = (b_{v_n}, b_{a_n}, b_a)\)). To do that, we need to prove that the set \(A\) of all those judgment is consistent, i.e., that \(A \subseteq \mathcal{F}_A\). This amounts to show that if \(c\) is an immediate premise is themselves in \(A\). Let’s distinguish some cases:
- If \(M = V\) then \(V \vdash_{CN} \{V^1\}\) by \(b_{v_n}\) rule, and \(\{V^1\} = \mathcal{S}_V(V)\) because of Lemma \(9\).
- If \(M\) is an application \(NL\), take the judgment \(c_1 = N \vdash_{CN} \mathcal{S}_N(N)\), and the family of judgments \(\{P[L/x]\} \vdash_{CN} \mathcal{S}_N(\{P[L/x]\})\}1_{\lambda x. \mathcal{P} \in \mathcal{S}(\mathcal{S}_N(N))}\): we will prove that the judgment \(NL \vdash_{CN} \mathcal{S}_N(\mathcal{N})\) can be derived in a single step from \(c_1\) and those in the family above by means of \(b_{a_n}\) rule. Simply observe that

\[
N \vdash_{CN} \mathcal{S}_N(N) \quad \{P[L/x]\} \vdash_{CN} \mathcal{S}_N(\{P[L/x]\})\}1_{\lambda x. \mathcal{P} \in \mathcal{S}(\mathcal{S}_N(N))} \xrightarrow{\text{ba}_v} \mathcal{S}_N(N)(\lambda x. \mathcal{P}) \cdot \mathcal{S}_N(P[L/x])
\]

The thesis follows applying Lemma \(9\).
- If \(M\) is a sum \(N \oplus L\), take the judgment \(c_1 = N \vdash_{CN} \mathcal{S}_N(N)\) and \(c_2 = M \vdash_{CN} \mathcal{S}_N(L)\): we will prove that the judgment \(N \oplus L \vdash_{CN} \mathcal{S}_N(N)\) can be inferred in a single step from \(c_1\) and \(c_2\) by means of \(b_{s_v}\) rules. Clearly, \(c_1\) and \(c_2\) belong to \(A\). Moreover

\[
N \vdash_{CN} \mathcal{S}_N(N) \quad L \vdash_{CN} \mathcal{S}_N(L) \xrightarrow{b_{s_n}} \mathcal{S}_N(N) + \frac{1}{2} \cdot \mathcal{S}_N(L)
\]

and by Lemma \(9\), case \(3\) we obtain the thesis.
This concludes the proof. □

Theorem 4 $B_{CN}(M) = S_{IN}(M)$.

Proof. This is a corollary of Proposition 2 and Proposition 5. □

7 CPS Translations and Simulations

In this section we show that in Λ_{\oplus} it is possible to simulate call-by-value by call-by-name and vice versa. To do that, we follow Plotkin’s CPS translation [17], extended to accommodate binary choice.

It is well known that in the weak untyped lambda calculus, call-by-value and call-by-name are not equivalent notions of reduction. Moreover, the presence of binary choice exacerbates the confluence problem, as shown in Section 2. It is clear that duplications play a central role: in particular, the order in which probabilistic choices and duplications are performed matters.

The presence of binary choices opens a related question about the possibility of including some “administrative rules” distributing sums over the other constructs. The following example shows that it may be critical to include administrative rules:

Example 7 Let us consider the following terms: $M \equiv \lambda x.x(M \top \oplus M \bot)$ and $N \equiv (\lambda x.xM \top \oplus (\lambda x.xM \bot \oplus \overline{z}))$. Note that M can be obtained from N by means of administrative rules like $L(P \oplus Q) = (LP) \oplus (LQ)$. Consider the term $N_{xor} \equiv (\lambda z.M_{xor})$. We have $S_{IV}(MN_{xor}) = \{M_{xor}\} = \emptyset$ and $S_{IN}(MN_{xor}) = \{M_{xor}, M_{xor}'\} = \emptyset$, whereas $S_{IV}(NN_{xor}) = S_{IN}(NN_{xor}) = \emptyset$ and therefore M and N have different call-by-name observational behaviors, thus M and N can not be considered equivalent terms.

A study about the observational behavior of terms is a fascinating subject, but is out of the scope of this paper. By the way, this is extensively investigated in the non deterministic setting [6], in which an algebraic semantics of terms is defined by way of a generalization of Böhm’s trees. A further generalization to the probabilistic setting is left to future work.

What we are interested here is to develop an operational study of Λ_{\oplus}. And an interesting question is clearly whether call-by-value and call-by-name, although being distinct notions of reduction, can be somehow made equivalent through a suitable CPS translation, even in presence of binary choices (with a probabilistic semantics).

In this section, a simulation between call-by-value and call-by-name in Λ_{\oplus} is proved. We begin with the simulation of call-by-value by call-by-name (Section 7.1), then we will carry on with the simulation of call-by-name by call-by-value (Section 7.2).

7.1 Simulating Call-By-Value with Call-By-Name

Suppose to extend Λ_{\oplus} with a denumerable set of continuation variables $C = \{\alpha, \beta, \epsilon\}$, disjoint from the original set X of variables of the language. We will call Λ_{\oplus}^+ the language of lambda terms extended this way. All definitions and constructions on Λ_{\oplus} (including its operational semantics) extend smoothly to Λ_{\oplus}^+.

Call-by-value reduction on Λ_{\oplus} can be simulated by call-by-name reduction of Λ_{\oplus}^+ by translating every term M in Λ_{\oplus} to a term in Λ_{\oplus}^+, which will be proved to be equivalent to M in a certain sense.

Definition 9 (Call-by-value Translation) The translation map $\llbracket \cdot \rrbracket$ from Λ_{\oplus} to Λ_{\oplus}^+ is recursively defined as follows:

\[
\llbracket x \rrbracket = \lambda \epsilon.\epsilon x; \quad \llbracket MN \rrbracket = \lambda \epsilon.\epsilon(\llbracket M \rrbracket(\lambda \alpha.\llbracket N \rrbracket(\lambda \beta.\alpha \beta \epsilon)));
\]

\[
\llbracket \lambda x. M \rrbracket = \lambda \epsilon.\epsilon \lambda x.\llbracket M \rrbracket; \quad \llbracket M \oplus N \rrbracket = \lambda \epsilon.\llbracket M \rrbracket(\lambda \alpha.\llbracket N \rrbracket(\lambda \beta.((\lambda \gamma.\alpha) \oplus (\lambda \gamma.\beta)))).
\]
As expected, call-by-value is simulated by way of so-called continuations. As a consequence, (call-by-value) reduction on M is not simulated simply reducing (in call-by-name), $\|M\|$, but by feeding it with the identity continuation $\lambda x.x$. Furthermore, we do not obtain this way the same value(s) as the one(s) we would obtain by evaluating M, but something related to that by a function $Ψ$, which sends values in $\Lambda_⊕$ into values in $\Lambda_⊕^+$ as follows:

$$Ψ(x) = x; \quad Ψ(\lambda x.M) = \lambda x.\|M\|.$$

Clearly, $Ψ$ can be naturally extended to a map on distributions (of values).

The rest of this section is devoted to showing the following theorem, which retracts in $\Lambda_⊕$ the classic result from \[17\]:

Theorem 5 (Simulation) For every M, $Ψ(S_N(M)) = S_N(\|M\|((\lambda x.x))$.

Let us get back to the proof. The following fact and the following substitution lemma are necessary.

Fact 2 $(M ⊕ N){/x} = M/{/x} ⊕ N{/x}$.

Lemma 10 extends Plotkin’s substitution lemma (see \[17\], Lemma 1, page 149)

Lemma 10 (Substitution) $\|M\|\{Ψ(V)/x\} = \|M{//x}\|$.

Proof. By induction on the size of M. An interesting case:

- If $M = N ⊕ L$, then

 $\|M\|\{Ψ(V)/x\} = \lambda ε.\|N\|((\lambda α.\|L\|((\lambda β.((\lambda γ.γα ⊕ (λ γ.γβ))ε))(Ψ(V)/x))

 = \lambda ε.\|N\|\{Ψ(V)/x\}(\lambda α.\|L\|\{Ψ(V)/x\}(\lambda β.((\lambda γ.γα ⊕ (λ γ.γβ))ε))

 = \lambda ε.\|N\{Ψ(V)/x\} ⊕ L\{Ψ(V)/x\}\|((\lambda γ.γα ⊕ (λ γ.γβ))ε))

 = \|N\{Ψ(V)/x\} ⊕ L\{Ψ(V)/x\}\| = \|N ⊕ L\{Ψ(V)/x\}\|].$

Other cases are very similar to the previous one. This concludes the proof.

We define now the suitable extension of the infix operator “;” introduced by Plotkin in \[17\].

Definition 10 (Infix operator “;” for $\|\|$) The infix operator “;” for the map $\|\|$ is defined as follows:

$$V : K = KΨ(V)

L P : K = L : (\lambda α.\|P\|((\lambda β.αβK)) \text{ if } L \notin \text{Val}

V L : K = L : ((\lambda β.Ψ(V)βK)) \text{ if } L \notin \text{Val}

V W : K = Ψ(V)Ψ(W)K

L ⊕ P : K = L : (\lambda α.\|P\|((\lambda β.(((\lambda γ.γα ⊕ (λ γ.γβ))βK)) \text{ if } L \notin \text{Val}

V ⊕ L : K = L : ((\lambda β.((\lambda γ.γΨ(V)) ⊕ (λ γ.γβ))K)) \text{ if } L \notin \text{Val}

V ⊕ W : K = ((\lambda γ.γΨ(V)) ⊕ (λ γ.γΨ(W)))K

The operator “;” can be naturally extended to distributions of values. In this case we will use the notation $\mathcal{D} : K$.

The following lemmas exploit operator “;” and give an important intermediate results in order to prove Theorem 3. As previously declared, Lemma 11 shows that $M : K$ is the result of the computation from $\|M\|K$ involving all structural reductions:

Lemma 11 For all $M ∈ \Lambda_⊕$, $\|M\|K →^* M : K$.

Proof. By induction on M and on the definition of “;”. Some interesting cases:
• If M is a value, then
\[
\|M\| K = (\lambda e. \Psi(M)) K \Rightarrow_n K \Psi(M) = M : K.
\]

• If M is $L \oplus R$. There are three subcases:
 1. $L \notin \text{Val}$. Then:
 \[
 \|L \oplus R\| K = (\lambda e. \|L\|)(\lambda e. \|R\|) (\lambda e. (((\lambda \gamma. \gamma \alpha) \oplus (\lambda \gamma. \gamma \beta)) e))) K
 \Rightarrow_n L \| R\| (\lambda \beta. ((\lambda \gamma. \gamma \alpha) \oplus (\lambda \gamma. \gamma \beta)) K)
 \Rightarrow_n L : (\lambda \alpha. \|R\| (\lambda \beta. ((\lambda \gamma. \gamma \alpha) \oplus (\lambda \gamma. \gamma \beta)) K)) = M : K
 \]
 2. $L \in \text{Val}$ and $R \notin \text{Val}$. Then:
 \[
 \|L \oplus R\| K = (\lambda e. \|L\|)(\lambda e. \|R\|) (\lambda e. (((\lambda \gamma. \gamma \alpha) \oplus (\lambda \gamma. \gamma \beta)) e))) K
 \Rightarrow_n L \| R\| (\lambda \beta. ((\lambda \gamma. \gamma \alpha) \oplus (\lambda \gamma. \gamma \beta)) K)
 \Rightarrow_n R : (\lambda \beta. ((\lambda \gamma. \Psi(L)) \oplus (\lambda \gamma. \gamma \beta)) K) = M : K.
 \]
 3. $L, R \in \text{Val}$. Then:
 \[
 (\|L \oplus R\|) K = \lambda e. \|L\| (\lambda e. \|R\|) (\lambda e. (\epsilon \alpha \oplus \epsilon \beta)) K
 \Rightarrow_n L : (\lambda \alpha. \|R\|) (\lambda \beta. (K \alpha \oplus K \beta))
 \Rightarrow_n R : (\lambda \beta. (K \Psi(L) \oplus K \beta))
 \Rightarrow_n (K \Psi(L) \oplus K \Psi(R)) = L \oplus R : K.
 \]

This concludes the proof.

As a technical tool, we here need a generalization of the small step semantic relation $\cdot \Rightarrow_{\text{IN}} \cdot$, that we denote as $\cdot \Rightarrow_{\text{D}} \cdot$. The new relation is defined inductively as $\cdot \Rightarrow_{\text{IN}} \cdot$, but the first two rules are replaced by the two rules

\[
\frac{M \Rightarrow \{M\}}{M \Rightarrow \emptyset}
\]

This means, in particular, that the relation above maps terms to distribution over terms, rather than distributions over values.

Of course, relations $\cdot \Rightarrow_{\text{IN}} \cdot$ and $\cdot \Rightarrow_{\text{D}} \cdot$ are strongly related, as shown in the following lemma:

Lemma 12 If $M \Rightarrow_{\text{IN}} \emptyset$, where $S(\emptyset) \subseteq \text{Val}$, then $M \Rightarrow_{\text{IN}} \emptyset$. Conversely, if $M \Rightarrow_{\text{IN}} \emptyset$ then $M \Rightarrow_{\text{D}} \emptyset$.

Proof. Simple inductions.

Lemma 13 is an auxiliary tool for the proof of **Lemma 14**. In particular, these lemmas extend Plotkin's lemma which states that whenever a term M reduces in call by value to a term N, then there exists a call-by-name computation from $M : K$ to $N : K$. In λN, we have to deal with the non deterministic nature of our relations \Rightarrow_n and \Rightarrow_n (which map terms into sequence of terms), and with the fact that the evaluation of a term returns a probability distribution on values and not a single values.
Lemma 13 If $M \Rightarrow_N N_1, \ldots, N_n$ and K is a value, then there are terms P_1, \ldots, P_n such that $M : K \Rightarrow_n P_1, \ldots, P_n$ and $P_i \Rightarrow_n N_i : K$ for every $i \in \{1, \ldots, n\}$.

Proof. By induction on the structure of M. Some interesting cases:

- If $M = L \oplus R$ with $L, R \in \text{Val}$, then $M \Rightarrow \nu L, R$ and by definition

 $M : K = ((\lambda \gamma. \Psi(L)) \oplus (\lambda \gamma. \Psi(R))) K$

 $\Rightarrow_n (\lambda \gamma. \Psi(L)) K, (\lambda \gamma. \Psi(R)) K$

 $(\lambda \gamma. \Psi(L)) K \Rightarrow_n K \Psi(L) = L : K$

 $(\lambda \gamma. \Psi(R)) K \Rightarrow_n K \Psi(R) = R : K$

- If $M = L \oplus R$ with $L \notin \text{Val}$, then $L \Rightarrow \nu S_1, \ldots, S_n$ and $N_i = S_i \oplus R$. But by induction hypothesis, there are terms Q_1, \ldots, Q_n such that

 $M : K = L : (\lambda \alpha . \| R \|[\lambda \beta . ((\lambda \gamma . \alpha) \oplus (\lambda \gamma . \beta)) K])) = L : J$

 $\Rightarrow_n Q_1, \ldots, Q_n$

 $Q_i \Rightarrow_n S_i : J$

Notice that, on the other hand:

$S_i : J = S_i : (\lambda \alpha . \| R \|[\lambda \beta . ((\lambda \gamma . \alpha) \oplus (\lambda \gamma . \beta)) K]))$

Now, if S_i is a value, then

$S_i : J = J \Psi(S_i) \Rightarrow_n \| R \|[\lambda \beta . ((\lambda \gamma . \Psi(S_i)) \oplus (\lambda \gamma . \beta)) K])$

$= S_i \oplus R : K$

If S_i is not a value, then $S_i : J$ is itself $S_i \oplus R : K$.

- If $M = L \oplus R$ with $L \in \text{Val}$ then $R \Rightarrow \nu S_1, \ldots, S_n$ and $N_i = L \oplus S_i$. Similar to the previous cases.

This concludes the proof. □

Lemma 14 If $M \Rightarrow_N \mathcal{D}$ and K closed value, then $M : K \Rightarrow \mathcal{D} : K$.

Proof. By induction on the complexity of a derivation for $M \Rightarrow_N \mathcal{D}$:

- If $M \Rightarrow_0 \emptyset$, then clearly $M : K \Rightarrow \emptyset : K$, simply because $\emptyset : K = \emptyset$.
- If $M \Rightarrow \nu N$ and $N \Rightarrow \nu \delta_i$, where $\mathcal{D} = \sum_{i=1}^{n} \frac{1}{n} \delta_i$, then, by Lemma 13, $M : K \Rightarrow \nu L_1, \ldots, L_n$ and $L_i \Rightarrow \nu N_i : K$. By induction hypothesis, $N_i : K \Rightarrow \delta_i : K$ and so we can easily form a derivation for $M : K \Rightarrow \sum_{i=1}^{n} (\frac{1}{n} \delta_i) : K$ But clearly,

$$\sum_{i=1}^{n} \left(\frac{1}{n} \delta_i\right) : K = \left(\sum_{i=1}^{n} \frac{1}{n} \delta_i\right) : K$$

This concludes the proof. □

Lemma 13 shows that the call-by-value evaluation of a term M dominates, in term of distributions, the call by-name evaluation of the continuation $M : \lambda x . x$, up to a suitable translation by function Ψ:

Lemma 15 If $M : \lambda x . x \Rightarrow_N \mathcal{D}$, then $M \Rightarrow_0 \mathcal{E}$, where $\Psi(\mathcal{E}) \geq \mathcal{D}$.

Proof. The proof goes by induction on the complexity of a derivation π of $M : \lambda x . x \Rightarrow_N \mathcal{D}$. Some interesting cases:

- If M is a value V:

 - if $V : I \Rightarrow_0 \emptyset$, then $\mathcal{E} = \emptyset$ itself;
• if $V : I \Rightarrow \text{IN} \mathcal{D}$ with $\mathcal{D} \neq \emptyset$, then $\mathcal{D} = \{V^1\}$.

• If M is not a value:
 • if $M : I \Rightarrow \text{IN} \mathcal{D}$ the thesis follows trivially;
 • if $M : I \Rightarrow \text{IN} \mathcal{D}$ with $\mathcal{D} \neq \emptyset$, let N_1, \ldots, N_n be such that $M \Rightarrow N_i$ and $D = \sum_{i=1}^n D_i$. By induction hypothesis, $N_i \Rightarrow I \mathcal{F}_i$ where $\Psi(\mathcal{F}_i) \geq D_i$ and so we can form a derivation of $M \Rightarrow IV (\sum_{i=1}^n \mathcal{F}_i)$. But clearly,

$$\Psi(\sum_{i=1}^n \mathcal{F}_i) = \sum_{i=1}^n \Psi(\mathcal{F}_i) \geq \sum_{i=1}^n D_i = D.$$

This concludes the proof. □

By means of Lemma 11, Lemma 14, Lemma 12 and Lemma 15, it is possible to prove Theorem 5.

Proof. [Theorem 5] To prove that $\Psi(\mathcal{S}_V(M)) = \mathcal{S}_V(\|M\|\lambda x.x)$, we proceed by showing the following:

1. If $M \Rightarrow IV \mathcal{D}$, then $\|M\|\lambda x.x \Rightarrow IV \mathcal{E}$ and $\mathcal{E} \geq \Psi(\mathcal{D})$.
2. If $\|M\|\lambda x.x \Rightarrow IV \mathcal{E}$, then $M \Rightarrow IV \mathcal{D}$ where $\Psi(\mathcal{E}) \geq D$.

To prove point 1, we observe that if $M \Rightarrow IV \mathcal{D}$, then both $\|M\|\lambda x.x \Rightarrow IV \mathcal{E}$ and $\mathcal{E} \geq \Psi(\mathcal{D})$.

Point 2 is nothing more than Lemma 15. This concludes the proof. □

7.2 Simulating Call-By-Name by Call-By-Value

In Section 7.1 we proved the “imperfect” simulation of call-by-value by call-by-name strategy. The inverse direction is provable in a very similar way.

Let us define the extended language Λ^+_\oplus as in Section 7.1.

Definition 11 (Call-by-value Translation) The translation map $\| \cdot \|$ from Λ^\oplus_\ominus to Λ^+_\oplus is recursively defined as follows:

$$\|x\| = x$$
$$\|\lambda x.M\| = \lambda x.\|M\|$$
$$\|MN\| = \lambda x.\|M\|\|\lambda a.N\|$$
$$\|M \oplus N\| = \lambda x.((\|\lambda a.M\| \|\lambda a.N\|) \|a\|)$$

We also define a function Φ, which sends values into terms as

$$\Phi(x) = x(\lambda y.y)$$
$$\Phi(\lambda x.M) = \lambda x.\|M\|$$

Observe that Φ sends closed values to closed values. As such, it can be naturally extended to distributions of closed values.

It is possible to state and prove the dual of Theorem 5.

Theorem 6 (Simulation) For every M, $\Phi(\mathcal{S}_V(M)) = \mathcal{S}_V(\|M\|\lambda x.x)$.

To prove Theorem 6 we need some technical lemmas, as in Section 7.1. We retrace the same proof techniques.

28
Lemma 16 \[\|M\|\{\|N\|/x\} = \|M\{N/x\}\|. \]

Proof. By induction on the size of \(M\). We give here only the sum case. See [] for other cases.

- If \(M = L \oplus R\) then:

\[
\|L \oplus R\|\{\|N\|/x\} \triangleq \lambda \epsilon.((\lambda \alpha.\|L\|\alpha) \oplus (\lambda \alpha.\|P\|\alpha))\epsilon\{\|N\|/x\} \\
= \lambda \epsilon.((\lambda \alpha.\|L\|\{\|N\|/x\}\alpha) \oplus (\lambda \alpha.\|R\|\{\|N\|/x\}\alpha))\epsilon \\
i. \triangleq \lambda \epsilon.((\lambda \alpha.\|L\|\{\|N\|/x\}\{\|\alpha\}} \oplus (\lambda \alpha.\|P\|\{\|\alpha\}}))\epsilon \\
def = \|\{(L \oplus R)\{\|N\|/x\}\|\}
\]

This concludes the proof. \(\square\)

Now the infix operator is defined as:

\[
\begin{align*}
V : K & = K \Phi(V) \\
LP : K & = L : (\lambda \alpha.\|P\|K) \text{ if } L \notin \text{Val} \\
VL : K & = \Phi(V)\|L\|K \text{ if } V \in \text{Val} \text{ and } L \notin \text{Val} \\
L \oplus P : K & = ((\lambda \alpha.\|L\|\alpha) \oplus (\lambda \alpha.\|P\|\alpha))K
\end{align*}
\]

Lemma 17 *For all \(M \in \Lambda_\oplus\), \(\|M\|K \Rightarrow^* M : K\).*

Proof. By induction on the term \(M\). We give here only the sum case. See [] for other cases.

\[
\|L \oplus P\|K = \epsilon.((\lambda \alpha.\|L\|\alpha) \oplus (\lambda \alpha.\|P\|\alpha))\epsilon K \\
\Rightarrow^* (\lambda \alpha.\|L\|\alpha) \oplus (\lambda \alpha.\|P\|\alpha))K \\
def = L \oplus P : K
\]

\(\square\)

Lemma 18 *If \(M \Rightarrow_n N_1, \ldots, N_n\) and \(K\) is a value, then there are terms \(P_1, \ldots, P_n\) such that \(M : K \Rightarrow_P P_1, \ldots, P_n\) and \(P_i \Rightarrow^{\epsilon} N_i : K\) for every \(i \in \{1, \ldots, n\}\).*

As a technical tool, we here need a generalization of the small step semantic relation \(\cdot \Rightarrow \cdot\), that we denote as \(\cdot \Rightarrow^{\epsilon}\), which is defined inductively, but in which the first two rules are replaced by the two rules

\[
\begin{align*}
M & \Rightarrow \{M^1\} \\
M & \Rightarrow \emptyset
\end{align*}
\]

This means, in particular, that the relation above maps terms to distribution over terms, rather than distributions over values.

Lemma 19 *If \(M \Rightarrow \mathcal{D}\), where \(S(\mathcal{D}) \subseteq \text{Val}\), then \(M \Rightarrow_{\text{IV}} \mathcal{D}\). Conversely, if \(M \Rightarrow_{\text{IV}} \mathcal{D}\) then \(M \Rightarrow \mathcal{D}\).*

Proof. Simple inductions. \(\square\)

Lemma 20 *If \(M \Rightarrow_{\text{IV}} \mathcal{D}\), then \(M : K \Rightarrow \mathcal{D} : K\).*
As a consequence, it’s clear that whether this is an essential restriction or not. In this section, we show that this is not.

\[\sum_{i=1}^{n} \left(\frac{1}{n} \epsilon_i : K \right) = \left(\sum_{i=1}^{n} \frac{1}{n} \right) : K \]

This concludes the proof.

Lemma 21 If \(M : \lambda x. x \Rightarrow_{IV} \varnothing \), then \(M \Rightarrow_{IV} \varnothing \), where \(\Phi(\varnothing) \geq \varnothing \).

Proof. The proof goes by induction on the complexity of the derivation \(\pi \) of \(M : \lambda x. x \Rightarrow_{IV} \varnothing \).

Some interesting cases:

- If \(M \) is a value \(V \):
 - if \(V : I \Rightarrow_{IV} \varnothing \), then \(\varnothing = \varnothing \) itself;
 - if \(V : I \Rightarrow_{IV} \varnothing \) with \(\varnothing \neq \varnothing \), then \(\varnothing = \{V\} \).

- If \(M \) is not a value:
 - if \(M : I \Rightarrow_{IV} \varnothing \) the thesis follows trivially;
 - if \(M : I \Rightarrow_{IV} \varnothing \) with \(\varnothing \neq \varnothing \), let \(N_1, \ldots, N_n \) be such that \(M \Rightarrow_{IV} \{N\} \). By Lemma 12, there must be derivations \(\rho_1, \ldots, \rho_n \) (all smaller than \(\pi \)) such that \(\rho_1 : N_1 : \lambda x. x \Rightarrow_{IV} \epsilon_1 \) and \(\varnothing = \sum_{i=1}^{n} \frac{1}{n} \epsilon_i \). By induction hypothesis, \(N_i \Rightarrow_{IV} \varnothing_i \) where \(\Phi(\varnothing_i) \geq \epsilon_i \) and so we can form a derivation of \(M \Rightarrow_{IV} \sum_{i=1}^{n} \varnothing_i \). But clearly,

\[\Phi(\sum_{i=1}^{n} \varnothing_i) = \sum_{i=1}^{n} \Phi(\varnothing_i) \geq \sum_{i=1}^{n} \epsilon_i = \varnothing. \]

This concludes the proof.

Proof. [Theorem 6] To prove that \(\Phi(\mathcal{S}_\delta(M)) = \mathcal{S}_\delta(\{M\} \lambda x. x) \), we proceed by showing the following:

1. If \(M \Rightarrow_{IV} \varnothing \), then \(\{M\} \lambda x. x \Rightarrow_{IV} \varnothing \) and \(\varnothing \geq \Psi(\varnothing) \).
2. If \(\{M\} \lambda x. x \Rightarrow_{IV} \varnothing \), then \(M \Rightarrow_{IV} \varnothing \) where \(\Phi(\varnothing) \geq \varnothing \).

To prove point 1, we observe that if \(M \Rightarrow_{IV} \varnothing \), then both \(\{M\} \lambda x. x \Rightarrow_{IV} \varnothing \) (by Lemma 17) and \(M : K \Rightarrow_{IV} \varnothing : K \) (by Lemma 20 and Lemma 12). Now, notice that, for every value \(V \),

\[V : (\lambda x. x) = (\lambda x. x) \Phi(V) \Rightarrow_{IV} \Phi(V). \]

As a consequence, it’s clear that \(\{M\} : \lambda x. x \Rightarrow_{IV} \varnothing \).

Point 2 is nothing more than Lemma 21. This concludes the proof.

8 On the Expressive Power of \(\Lambda_\varnothing \)

The lambda calculus \(\Lambda_\varnothing \) is endowed with a very restricted form of (probabilistic) choice, which is binary and such that both possible outcomes have probability 1/2. It is thus natural to ask oneself whether this is an essential restriction or not. In this section, we show that this is not essential, by proving that the set of representable distributions on the natural numbers, namely those which can be denoted by a term of \(\Lambda_\varnothing \), equals the set of computable distributions, defined in terms of Turing Machines. In this section, we assume to work with call-by-value reduction, even if everything could be rephrased in call-by-name, in view of the results in Section 7.1.
We first of all need to define what a computable distribution (on the natural numbers) is. This is based on a notion of approximation for the function assigning probabilities to natural numbers.

In Λ_{\oplus} we are able to represent (up to approximation) probability functions from a suitable domain to the real interval $[0,1]$. The notion of approximating function is necessary:

Definition 12 (Approximating function) Given any function $f : Q \to [0,1]$, the approximating function for f, denoted Appr_f, is the function from $Q \times N$ to $\{0,1\}^*$ which on input (a,n), returns the binary string of length n containing the first n digits of $f(a)$ in binary notation.

We define now the class of computable functions:

Definition 13 (Computable Distributions) A distribution $D : N \to [0,1]$ is computable iff the function $\text{Appr}_D : N \times N \to \{0,1\}^*$ is computable.

In the rest of the section we will use the following notation:

Notation 2 Given a proper distribution \mathcal{D} that assigns nonzero probability only to representation of natural numbers, the corresponding probability distribution over the naturals will be denoted with $\{\mathcal{D}\}$.

The next step consists in understanding which class of distributions on the natural numbers can be captured by Λ_{\oplus}, i.e. is the semantics of a lambda term. For this reason, we assume to work with a fixed encoding of the natural numbers into lambda terms, namely the one usually attributed to Scott [22].

Definition 14 (Representable Distribution) A probability distribution D over the natural numbers is said to be representable iff there is a lambda term M_D such that $\{SIV(M_D)\} = D$.

Our main goal will be to prove that the class of representable distributions will coincide with the class of computable distributions: on one hand each distribution obtained by small step evaluation of a lambda term in Λ_{\oplus} is proved to be computable (Soundness Theorem 7); on the other hand, each computable distribution can be represented by a term in Λ_{\oplus} (Completeness Theorem 8).

Whatever can be denoted by a lambda term is actually a computable distribution, i.e. one which can be approximated up to any degree of precision by a Turing Machine:

Theorem 7 (Soundness) Every representable distribution is computable.

Proof. Suppose D is a representable probability distribution. Then there is a term M such that $\{SIV(M)\} = D$. This implies, in particular, that $\sum SIV(M) = 1$, because $\sum D = 1$ itself. An algorithm computing Appr_D, then can be easily designed as an evaluator for M: on input (a,n), simply compute distributions D such that $M \Rightarrow IV D$, until you find one such that $\sum D$ is big enough as to be able to determine the probability of all values up to the n-th bit.

The completeness theorem requires other definitions and some auxiliary results. To prove expressiveness results, we exploit standard lambda calculus encodings. Natural numbers and binary strings can be encoded as follows:

\[
\begin{align*}
\langle 0 \rangle &= \lambda xy.x \\
\langle n + 1 \rangle &= \lambda xy.y \langle n \rangle \\
\langle \varepsilon \rangle &= \lambda xz.x \\
\langle 0 \cdot s \rangle &= \lambda xy.y \langle s \rangle \\
\langle 1 \cdot s \rangle &= \lambda yxz.z \langle s \rangle
\end{align*}
\]

Moreover, we encode pairs of values as follows:

\[
\langle V, W \rangle = \lambda x.xVW
\]

We define the class of the so-called finite distribution terms:
Definition 15 (Finite distribution terms) Finite distribution terms are lambda-terms generated inductively as follows:
- For every n, $\lambda xy.x^n$ is a finite distribution term;
- If M and N are finite distribution terms, then $\lambda xy.MN$ is a finite distribution term.

Given a finite distribution term M, the underlying probability distribution on the natural numbers $\{M\}$ is defined in the natural way:

$$\{\lambda xy.x^n\} = \{n^1\}$$

$$\{\lambda xy.MN\} = \frac{1}{2}\{M\} + \frac{1}{2}\{N\}.$$

Lemma 22 is an intermediate result towards Lemma 23.

Lemma 22 (Fixed-point Combinator) There is a term H such that for every value V, HV rewrites deterministically to $V(\lambda x.HVx)$.

Proof. The term H is simply WW where

$$W = \lambda x.\lambda y.\lambda z.xyz.$$

Indeed:

$$HV = WWV$$

$$\Rightarrow V(\lambda y.\lambda z.WWy)\rangle V$$

$$\Rightarrow V(\lambda z.WWz)$$

$$= V(\lambda z.(HV)z).$$

This concludes the proof. □

Lemma 23 There is a lambda term M_{fdt} such that for every finite distribution term N, $\{SV(M_{fdt}N)\} = \{N\}$.

Proof. The term M_{fdt} is simply HV where V is

$$\lambda xy.y(\lambda z.xz) \oplus (xw)$$

Indeed, by induction (X is $\lambda x.HVx$):

$$M_{fdt}(\lambda xy.x^n) \Rightarrow (\lambda xy.x^n)(\lambda z.(Xz) \oplus (Xw))$$

$$\Rightarrow (\lambda z.x^n) \Rightarrow n^n;$$

$$M_{fdt}(\lambda xy.MN) \Rightarrow V(X(\lambda y.MN))$$

$$\Rightarrow (\lambda z.(Xz) \oplus (Xw))MN$$

$$\Rightarrow (XM) \oplus (XN)$$

and $(XM) \oplus (XN)$, applying the i.h. on the subterms, evaluates with equiprobable distribution to either $\{M\}$, $\{N\}$. This concludes the proof. □

The following proposition guarantees the existence of a sort of successive approximations function, which computes the distribution of a given term in a finite number of steps.

Proposition 7 (Splitting) There is a lambda term M_{split} such that for every term computing the distribution D, $M_{split}N$ rewrites deterministically to (L, P) where

- L is a finite distribution term such that $\{L\} = \mathcal{E}$;
- P computes a distribution \mathcal{F};
- $D = \frac{1}{2}\mathcal{E} + \frac{1}{2}\mathcal{F}$.

32
Proof. Only informally, observe that it is possible to find the (sub)distribution E in a finite numbers of steps, by successively querying N (which takes two natural numbers as arguments) in the dovetail order. This way, the (sub)distribution E can always be determined. □

By means of Lemma 23 and Proposition 7 it is possible to prove the following completeness result:

Theorem 8 (Completeness) Every computable probability distribution D over the natural numbers is representable by a term M_D.

Proof. Define a term M simply as HV where V is

$$
\lambda x y. (M_{split} y)(\lambda z w. [\lambda s. (M_{fdt} z) \oplus \lambda s. (x w)] (\lambda s. s))
$$

We will prove the following statement: for any $n \in \mathbb{N}$ e for all $N \in \Lambda^{\oplus}$ which computes a distribution \mathcal{E}, there exists a distribution \mathcal{D} such that $MN \Rightarrow_N IV \mathcal{D}$ with $\sum \mathcal{D} \geq (1 - \frac{1}{2^n})$ and $\{ \mathcal{D} \} \leq \mathcal{E}$. We will prove the thesis by induction on the natural number n.

- If $n = 0$ then $\mathcal{D} = \emptyset$ and $MN \Rightarrow_N \emptyset$ trivially.
- If $n > 0$ observe that MN rewrites as follows:

$$
MN = HV N \Rightarrow^* V (\lambda t. (HV t) N)
$$

$$
\Rightarrow^* (M_{split} N) (\lambda z w. (((\lambda s. (M_{fdt} z)) \oplus (\lambda s. (\lambda t. (HV t) w))) (\lambda s. s)))
$$

R.

Observe that, by Proposition 7, $M_{split} N$ rewrites deterministically to the pair $\langle L, P \rangle$, where L is a finite distribution term such that $\{ L \} = \mathcal{E}_L$ and P is a finite distribution term such that $\{ P \} = \mathcal{E}_P$ and $\mathcal{E} = \frac{1}{2} \mathcal{E}_L + \frac{1}{2} \mathcal{E}_P$. Then:

$$
(\lambda x. x L P) R \Rightarrow (\lambda z w. (((\lambda s. (M_{fdt} z)) \oplus (\lambda s. (\lambda t. (HV t) w))) (\lambda s. s))) L P
$$

$$
\Rightarrow^2 ((\lambda s. M_{fdt} L) \oplus (\lambda s. (\lambda t. (HV t) P)) (\lambda s, s)
$$

$$
\Rightarrow (\lambda s. M_{fdt} L) (\lambda s. s), (\lambda s. (\lambda t. (HV t) P) (\lambda s,s).
$$

Now observe that, $(\lambda s. M_{fdt} L)(\lambda s, s) \Rightarrow M_{fdt} L$ and by Lemma 23 this term evaluates to $\{ L \} = \mathcal{E}_L$. Moreover, $(\lambda s. (\lambda t. (HV t) P)(\lambda s, s)) \Rightarrow^2 (HV) P = MP$ and we can apply to P the induction hypothesis. Since P compute a distribution \mathcal{E}_P by induction hypothesis for each natural number n, there exist a distribution \mathcal{D}_P such that $MP \Rightarrow_N IV \mathcal{D}_P$ with $\sum \mathcal{D}_P \geq (1 - \frac{1}{2^n})$ and $\{ \mathcal{D}_P \} \leq \mathcal{E}_P$.

Let us take the distribution \mathcal{D} as $\mathcal{D} = \frac{1}{2} \mathcal{D}_L + \frac{1}{2} \mathcal{D}_P$. Then:

$$
\sum \mathcal{D} = \frac{1}{2} \sum \mathcal{D}_L + \frac{1}{2} \sum \mathcal{D}_P
$$

$$
\geq \frac{1}{2} + \frac{1}{2} \cdot (1 - \frac{1}{2^n})
$$

$$
= \frac{1}{2} + \frac{1}{2} - \frac{1}{2^n+1} = 1 - \frac{1}{2^n+1}.
$$

Moreover, $\mathcal{D} \leq \mathcal{E}$. The thesis follows easily. □

9 Conclusions and Future Work

In this paper we studied probabilistic operational semantics for Λ_{\oplus}, a nondeterministic extension of untyped lambda calculus. We prove strong equivalence results between small-step and big-step...
semantics, both in call-by-value and in call-by-name. We also extend Plotkin’s simulation to our probabilistic setting and we state and prove some results about the expressive power of Λ_{\oplus}.

Starting from the present paper, several directions for future work are open. On the one hand, some theoretical aspects of the calculus remain unexplored: for example, it should be an interesting topic to develop an observational theory for Λ_{\oplus} terms. Moreover, the equivalence between inductive and co-inductive semantics seem to be reminiscent of equality between outer measure and inner measure in measure theory: it should be interesting to prove some results in this direction. On the other hand, it is possible to consider Λ_{\oplus} as a paradigmatic language for stochastic functional programming: it should be fascinating to analyze carefully the relationship between Λ_{\oplus} and other probabilistic languages (for example, Park’s language \mathcal{L}_γ [14]).

References

